Home / AP Calculus BC 1.4 Estimating Limit Values from Tables Study Notes

AP Calculus BC 1.4 Estimating Limit Values from Tables Study Notes - New Syllabus

AP Calculus BC 1.4 Estimating Limit Values from Tables Study Notes- New syllabus

AP Calculus BC 1.4 Estimating Limit Values from Tables Study Notes – AP Calculus BC- per latest AP Calculus BC Syllabus.

LEARNING OBJECTIVE

  • Estimating Limit Values from Tables

Key Concepts: 

  • Estimating Limit Values from Tables

AP Calculus BC-Concise Summary Notes- All Topics

Estimating Limit Values from Tables

Estimating Limit Values from Tables

Limits can be estimated numerically using a table of function values near the point of interest. This is especially useful when a function is too complicated to evaluate analytically.

Key Idea:

  • Choose values of \( x \) that approach the target point \( a \) from both the left (smaller than \( a \)) and the right (larger than \( a \)).
  • Compute \( f(x) \) at those values and observe what number the function values are approaching.
  • If the values from both sides approach the same number, that is the estimated limit.

Important Note: The function value at \( x = a \) does not affect the limit. The limit depends only on values near \( a \).

Example :

Use the table of values to estimate \( \lim_{x \to 2} \frac{x^2 – 4}{x – 2} \).

\( x \)\( f(x) = \frac{x^2 – 4}{x – 2} \)
1.93.9
1.993.99
1.9993.999
2.0014.001
2.014.01
2.14.1
▶️ Answer/Explanation

As \( x \) gets closer to 2 from the left and right, \( f(x) \) approaches 4.

\( \lim_{x \to 2} \frac{x^2 – 4}{x – 2} \approx 4 \).

Example :

Use the table to estimate \( \lim_{x \to 0} \frac{\sin x}{x} \) (in radians).

\( x \)\( f(x) = \frac{\sin x}{x} \)
-0.10.9983
-0.010.99998
-0.0010.9999998
0.0010.9999998
0.010.99998
0.10.9983
▶️ Answer/Explanation

The function values approach 1 as \( x \to 0 \) from both sides.

\( \lim_{x \to 0} \frac{\sin x}{x} \approx 1 \).

Example :

The function \( f(x) \) has the following values near \( x = 1 \).

Use the table to estimate \( \lim_{x \to 1^-} f(x) \), \( \lim_{x \to 1^+} f(x) \), and determine if \( \lim_{x \to 1} f(x) \) exists.

\( x \)\( f(x) \)
0.94.9
0.994.99
0.9994.999
1.0018.001
1.018.01
1.18.1
▶️ Answer/Explanation

From the left: As \( x \to 1^- \), the values approach 5, so \( \lim_{x \to 1^-} f(x) = 5 \).

From the right: As \( x \to 1^+ \), the values approach 8, so \( \lim_{x \to 1^+} f(x) = 8 \).

Since LHL ≠ RHL, the two-sided limit does not exist: \( \lim_{x \to 1} f(x) \text{ does not exist} \).

Scroll to Top