Home / AP Calculus BC 1.5 Determining Limits Using Algebraic Properties of Limits Study Notes

AP Calculus BC 1.5 Determining Limits Using Algebraic Properties of Limits Study Notes

AP Calculus BC 1.5 Determining Limits Using Algebraic Properties of Limits Study Notes - New Syllabus

AP Calculus BC 1.5 Determining Limits Using Algebraic Properties of Limits Study Notes- New syllabus

AP Calculus BC 1.5 Determining Limits Using Algebraic Properties of Limits Study Notes – AP Calculus BC-  per latest AP Calculus BC Syllabus.

LEARNING OBJECTIVE

  • Determining Limits Using Algebraic Properties of Limits

Key Concepts: 

  • Determining Limits Using Algebraic Properties of Limits

AP Calculus BC-Concise Summary Notes- All Topics

Determining Limits Using Algebraic Properties of Limits

Determining Limits Using Algebraic Properties of Limits

The value of a limit can often be determined using the limit laws (algebraic properties). These properties allow us to break down complex expressions into simpler components.

Key Limit Laws:

PropertyDescription
\( \lim_{x \to a} [f(x) + g(x)] = L + M \)Sum of limits = Limit of sum
\( \lim_{x \to a} [f(x) – g(x)] = L – M \)Difference of limits = Limit of difference
\( \lim_{x \to a} [f(x) \cdot g(x)] = L \cdot M \)Product of limits = Limit of product
\( \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}, M \neq 0 \)Quotient of limits = Limit of quotient
\( \lim_{x \to a} c \cdot f(x) = c \cdot L \)Constant multiple law
\( \lim_{x \to a} [f(g(x))] = f\big(\lim_{x \to a} g(x)\big) \)Limit of a composite function (if continuous)

Conditions:

  • These laws apply when individual limits exist and, in the quotient law, the denominator’s limit is not zero.
  • Composite function law applies when the outer function is continuous at the inner limit.

Example :

Compute \( \lim_{x \to 3} (x^2 + 5x – 7) \).

▶️ Answer/Explanation

Apply sum and constant laws:

\( \lim_{x \to 3} x^2 = 3^2 = 9 \)

\( \lim_{x \to 3} 5x = 5(3) = 15 \)

\( \lim_{x \to 3} (-7) = -7 \)

Combine: \( 9 + 15 – 7 = 17 \)

Answer: \( 17 \)

Example :

Find \( \lim_{x \to 2} \frac{x^2 – 4}{x – 2} \).

▶️ Answer/Explanation

Direct substitution gives \( \frac{4 – 4}{2 – 2} = \frac{0}{0} \), an indeterminate form.

Factor numerator: \( x^2 – 4 = (x – 2)(x + 2) \).

Simplify: \( \frac{(x – 2)(x + 2)}{x – 2} = x + 2 \) for \( x \neq 2 \).

Now take limit: \( \lim_{x \to 2} (x + 2) = 4 \).

Answer: \( 4 \)

Example :

Evaluate \( \lim_{x \to 0} (\sin x + x^2) \).

▶️ Answer/Explanation

Use sum law:

\( \lim_{x \to 0} \sin x = 0 \) and \( \lim_{x \to 0} x^2 = 0 \).

So, \( \lim_{x \to 0} (\sin x + x^2) = 0 + 0 = 0 \).

Example :

Compute \( \lim_{x \to -2} [7x^3] \).

▶️ Answer/Explanation

Apply constant multiple law: \( 7 \cdot \lim_{x \to -2} (x^3) \).

\( x^3 \) at \( x = -2 \) is \( (-2)^3 = -8 \).

So, \( 7 \cdot (-8) = -56 \).

Answer: \( -56 \).

Example:

Find \( \lim_{x \to 1} \frac{x^2 + 3x – 4}{x – 1} \).

▶️ Answer/Explanation

Direct substitution gives \( \frac{(1)^2 + 3(1) – 4}{1 – 1} = \frac{0}{0} \), so factor numerator.

\( x^2 + 3x – 4 = (x – 1)(x + 4) \).

Simplify: \( \frac{(x – 1)(x + 4)}{x – 1} = x + 4 \) for \( x \neq 1 \).

Take the limit: \( \lim_{x \to 1} (x + 4) = 5 \).

Answer: \( 5 \).

Example:

Evaluate \( \lim_{x \to 0^+} \sqrt{9 + 4x} \).

▶️ Answer/Explanation

The outer function \( \sqrt{\phantom{x}} \) is continuous, so we can substitute the inner limit.

\( \lim_{x \to 0^+} (9 + 4x) = 9 \).

Then, \( \sqrt{9} = 3 \).

Answer: \( 3 \).

Example :

Compute \( \lim_{x \to 2} \frac{5x^2 – 3}{x + 1} \).

▶️ Answer/Explanation

Apply quotient law:

\( \lim_{x \to 2} (5x^2 – 3) = 5(2^2) – 3 = 20 – 3 = 17 \).

\( \lim_{x \to 2} (x + 1) = 2 + 1 = 3 \).

So, \( \frac{17}{3} \).

Answer: \( \frac{17}{3} \approx 5.67 \).

More Workout Examples

Example 1 

  • Find all vertical asymptotes of the graph of each function.

(a) \(f\left ( x \right )=\frac{x}{x^{2}-1}\)

(b) \(f\left ( x \right )=\frac{x^{2}-4x-5}{x^{2}-x-2}\)

▶️Answer/Explanation

Solution

(a) \(f\left ( x \right )=\frac{x}{x^{2}-1}\)

      \(\frac{x}{\left ( x+1 \right )\left ( x-1 \right )}\)

      Factor the denominator.

      The denominator is 0 at x = −1 and x = 1 . The numerator is not 0 at these two points. There are two vertical asymptotes, x = −1 and x = 1 .

(b)

At all values other than x = −1, the graph of f coincides with the graph of \(y=\left ( x-5 \right )/\left ( x-2 \right ).\) So, x = 2 is the only vertical asymptote. At x = −1 the graph is not continuous.

Example 2 

  • Find the limit.

(a) \(\underset{x\rightarrow \infty }{lim}\frac{x^{3}-4x^{2}+7}{2x^{3}-3x-5}\)

(b) \(\underset{x\rightarrow \infty }{lim}\frac{\sqrt{4x^{2}+6x}}{3x-2}\)

▶️Answer/Explanation

Solution

Example 3

  •  Find the horizontal asymptotes of the graph of the function \(f\left ( x \right )=\frac{\sqrt[3]{2x^{3}-9}}{x}\).
▶️Answer/Explanation

Solution

Exercises – Limits and Asymptotes
Multiple Choice Questions

Question

  • \(\underset{x\rightarrow \infty }{lim}\frac{3+2x^{2}-x^{4}}{3x^{4}-5}=\)

(A) -2               (B) \(-\frac{1}{3}\)                (C) \(\frac{1}{5}\)               (D) 1

▶️Answer/Explanation

Ans:

1. B

Question

  •  What is \(\underset{x\rightarrow \infty }{lim}\frac{x^{3}+x-8}{2x^{3}+3x-1}=\)

(A) \(-\frac{1}{2}\)               (B) 0                (C) \(\frac{1}{2}\)               (D) 2

▶️Answer/Explanation

Ans:

2. C

Question

  • Which of the following lines is an asymptote of the graph of \(f\left ( x \right )=\frac{x^{2}+5x+6}{x^{2}-x-12}?\)

I. x = −3

II. x = 4

III. y = 1

(A) II only               (B) III only                (C) II and III only               (D) I, II, and III

▶️Answer/Explanation

Ans:

3. C

Question

  •  If the horizontal line y = 1 is an asymptote for the graph of the function f , which of the following statements must be true?

(A) \(\underset{x\rightarrow \infty }{lim}f\left ( x \right )=1\)

(B) \(\underset{x\rightarrow 1}{lim}f\left ( x \right )=\infty\)

(C) f (1) is undefined

(D) f (x) = 1 for all

▶️Answer/Explanation

Ans:

4. A

Question

  • If x = 1 is the vertical asymptote and y = −3 is the horizontal asymptote for the graph of the function f , which of the following could be the equation of the curve?

(A) \(f\left ( x \right )=\frac{-3x^{2}}{x-1}\)

(B) \(f\left ( x \right )=\frac{-3\left ( x-1 \right )}{x+3}\)

(C) \(f\left ( x \right )=\frac{-3\left ( x^{2}-1 \right )}{x-1}\)

(D) \(f\left ( x \right )=\frac{-3\left ( x^{2}-1 \right )}{\left (x-1 \right )^{2}}\)

▶️Answer/Explanation

Ans:

5. D

Question

  •  What are all horizontal asymptotes of the graph of \(y=\frac{6+3e^{x}}{3-3e^{x}}\) in the xy – plane?

(A) y = −1 only

(B) y = 2 only

(C) y = −1 and y = 2

(D) y = 0 and y = 2

▶️Answer/Explanation

Ans:

6. C

Question

  • Let \(f\left ( x \right )=\frac{3x-1}{x^{3}-8}.\)

(A) Find the vertical asymptote(s) of f . Show the work that leads to your answer.

(B) Find the horizontal asymptote(s) of f . Show the work that leads to your answer.

▶️Answer/Explanation

Ans:

7. (a) x = 2

    (b) y = 0

Question

  •  Let \(f\left ( x \right )=\frac{sin x}{x^{2}+2x}.\)

(A) Find the vertical asymptote(s) of f . Show the work that leads to your answer.

(B) Find the horizontal asymptote(s) of f . Show the work that leads to your answer.

▶️Answer/Explanation

Ans:

8. (a) x = −2

     (b) y = 0

Scroll to Top