Home / AP Calculus BC 1.5 Determining Limits Using Algebraic Properties of Limits Study Notes

AP Calculus BC 1.5 Determining Limits Using Algebraic Properties of Limits Study Notes - New Syllabus

AP Calculus BC 1.5 Determining Limits Using Algebraic Properties of Limits Study Notes- New syllabus

AP Calculus BC 1.5 Determining Limits Using Algebraic Properties of Limits Study Notes – AP Calculus BC- per latest AP Calculus BC Syllabus.

LEARNING OBJECTIVE

  • Determining Limits Using Algebraic Properties of Limits

Key Concepts: 

  • Determining Limits Using Algebraic Properties of Limits

AP Calculus BC-Concise Summary Notes- All Topics

Determining Limits Using Algebraic Properties of Limits

Determining Limits Using Algebraic Properties of Limits

The value of a limit can often be determined using the limit laws (algebraic properties). These properties allow us to break down complex expressions into simpler components.

Key Limit Laws:

PropertyDescription
\( \lim_{x \to a} [f(x) + g(x)] = L + M \)Sum of limits = Limit of sum
\( \lim_{x \to a} [f(x) – g(x)] = L – M \)Difference of limits = Limit of difference
\( \lim_{x \to a} [f(x) \cdot g(x)] = L \cdot M \)Product of limits = Limit of product
\( \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}, M \neq 0 \)Quotient of limits = Limit of quotient
\( \lim_{x \to a} c \cdot f(x) = c \cdot L \)Constant multiple law
\( \lim_{x \to a} [f(g(x))] = f\big(\lim_{x \to a} g(x)\big) \)Limit of a composite function (if continuous)

Conditions:

  • These laws apply when individual limits exist and, in the quotient law, the denominator’s limit is not zero.
  • Composite function law applies when the outer function is continuous at the inner limit.

Example :

Compute \( \lim_{x \to 3} (x^2 + 5x – 7) \).

▶️ Answer/Explanation

Apply sum and constant laws:

\( \lim_{x \to 3} x^2 = 3^2 = 9 \)

\( \lim_{x \to 3} 5x = 5(3) = 15 \)

\( \lim_{x \to 3} (-7) = -7 \)

Combine: \( 9 + 15 – 7 = 17 \)

Answer: \( 17 \)

Example :

Find \( \lim_{x \to 2} \frac{x^2 – 4}{x – 2} \).

▶️ Answer/Explanation

Direct substitution gives \( \frac{4 – 4}{2 – 2} = \frac{0}{0} \), an indeterminate form.

Factor numerator: \( x^2 – 4 = (x – 2)(x + 2) \).

Simplify: \( \frac{(x – 2)(x + 2)}{x – 2} = x + 2 \) for \( x \neq 2 \).

Now take limit: \( \lim_{x \to 2} (x + 2) = 4 \).

Answer: \( 4 \)

Example :

Evaluate \( \lim_{x \to 0} (\sin x + x^2) \).

▶️ Answer/Explanation

Use sum law:

\( \lim_{x \to 0} \sin x = 0 \) and \( \lim_{x \to 0} x^2 = 0 \).

So, \( \lim_{x \to 0} (\sin x + x^2) = 0 + 0 = 0 \).

Example :

Compute \( \lim_{x \to -2} [7x^3] \).

▶️ Answer/Explanation

Apply constant multiple law: \( 7 \cdot \lim_{x \to -2} (x^3) \).

\( x^3 \) at \( x = -2 \) is \( (-2)^3 = -8 \).

So, \( 7 \cdot (-8) = -56 \).

Answer: \( -56 \).

Example:

Find \( \lim_{x \to 1} \frac{x^2 + 3x – 4}{x – 1} \).

▶️ Answer/Explanation

Direct substitution gives \( \frac{(1)^2 + 3(1) – 4}{1 – 1} = \frac{0}{0} \), so factor numerator.

\( x^2 + 3x – 4 = (x – 1)(x + 4) \).

Simplify: \( \frac{(x – 1)(x + 4)}{x – 1} = x + 4 \) for \( x \neq 1 \).

Take the limit: \( \lim_{x \to 1} (x + 4) = 5 \).

Answer: \( 5 \).

Example:

Evaluate \( \lim_{x \to 0^+} \sqrt{9 + 4x} \).

▶️ Answer/Explanation

The outer function \( \sqrt{\phantom{x}} \) is continuous, so we can substitute the inner limit.

\( \lim_{x \to 0^+} (9 + 4x) = 9 \).

Then, \( \sqrt{9} = 3 \).

Answer: \( 3 \).

Example :

Compute \( \lim_{x \to 2} \frac{5x^2 – 3}{x + 1} \).

▶️ Answer/Explanation

Apply quotient law:

\( \lim_{x \to 2} (5x^2 – 3) = 5(2^2) – 3 = 20 – 3 = 17 \).

\( \lim_{x \to 2} (x + 1) = 2 + 1 = 3 \).

So, \( \frac{17}{3} \).

Answer: \( \frac{17}{3} \approx 5.67 \).

Scroll to Top