Home / AP Calculus AB and BC: Chapter 2 – Differentiation :2.2 -The Product and Quotient Rules and Higher Derivatives Study Notes

AP Calculus AB and BC: Chapter 2 – Differentiation :2.2 -The Product and Quotient Rules and Higher Derivatives Study Notes

The Product Rule

If f and g are both differentiable, then \(\frac{d}{dx}\left [ f\left ( x \right ) g\left ( x \right )\right ]=f\left ( x \right ){g}’\left ( x \right )+g\left ( x \right ){f}’\left ( x \right ).\)

The Quotient Rule

If f and g are both differentiable, then \(\frac{d}{dx}\left [ \frac{f\left ( x \right )}{g\left ( x \right )} \right ]=\frac{g\left ( x \right ){f}’\left ( x \right )-f\left ( x \right ){g}’\left ( x \right )}{\left [ g\left ( x \right ) \right ]^{2}}.\)

Higher Derivatives

If f is a differentiable function, then its derivative f ′ is also a function, so f ′ may have a derivative of its own. The second derivative f ′′ is the derivative of f ′ and the third derivative f ′′′ is the derivative of the second derivative.

In general, the nth derivative of f is denoted by f(n) f and is obtained from f by differentiating n times. Higher derivatives are denoted as follows.

Example 1

  •  Differentiate the function \(f\left ( x \right )=\left ( x^{3}-7 \right )\left ( x^{2}-4x \right ).\)
▶️Answer/Explanation

Solution

\({f}’\left ( x \right )=\left ( x^{3}-7 \right )\frac{d}{dx}\left ( x^{2}-4x \right )+\left ( x^{2}-4x \right )\frac{d}{dx}\left ( x^{3} -7\right )\)                      The product rule

\(=\left ( x^{3}-7 \right )\left ( 2x-4 \right )+\left ( x^{2}-4x \right )\left ( 3x^{2} \right )\)

\(=5x^{4}-16x^{3}-14x+28\)

Example 2

  • Differentiate the function \(f\left ( x \right )=\frac{3x^{2}-x}{\sqrt{x+1}}.\)
▶️Answer/Explanation

Solution

Example 3 

  • If \(f\left ( x \right )=\frac{1}{6}x^{3}+24\sqrt{x},\) find \({f}’\left ( x \right ),{f}”\left ( x \right ),{f}”’\left ( x \right ),{f}”’\left ( 9 \right ).\)
▶️Answer/Explanation

Solution

Exercises – The Product and Quotient Rules and Higher Derivatives

Multiple Choice Questions

  • If \(f\left ( x \right )=\left ( x^{3}-2x+5 \right )\left ( x^{-2}+x^{-1} \right ),\) then \({f}’\left ( 1 \right )=\)

(A) −10               (B) -6                (C) \(-\frac{9}{2}\)               (D) \(\frac{7}{2}\)

▶️Answer/Explanation

Ans:

1. A

  • If \(f\left ( x \right )=\frac{\sqrt{x}-1}{^{\sqrt{x}+1}}\) then \({f}’\left ( x \right )=\)

(A) \(\frac{\sqrt{x}}{\left ( \sqrt{x}+1 \right )^{2}}\)

(B) \(\frac{x}{\left ( \sqrt{x}+1 \right )^{2}}\)

(C) \(\frac{1}{\sqrt{x}\left ( \sqrt{x} +1\right )^{2}}\)

(D) \(\frac{\sqrt{x}-1}{\sqrt{x}\left ( \sqrt{x}+1 \right )^{2}}\)

▶️Answer/Explanation

Ans:

2. C

  • 3. If \(g\left ( 2 \right )=3\) and \({g}’\left ( 2 \right )=-1\), what is the value of \(\frac{d}{dx}\left ( \frac{g\left ( x \right )}{x^{2}} \right )\) at x=2?

(A) -3               (B) -1                (C) 0               (D) 2

▶️Answer/Explanation

Ans:

3. B

4. If \(f\left ( x \right )=\frac{x}{x-\frac{a}{x}}\) and \({f}’\left ( 1 \right )=\frac{1}{2}\), what is the value of a ?

(A) \(-\frac{5}{2}\)               (B) -1                (C) \(\frac{1}{2}\)               (D) 2

▶️Answer/Explanation

Ans:

4. B

5. If \(y=4\sqrt{x}-16\sqrt[4]{x}\), then \({y}”=\)

(A) \(\sqrt[4]{x}-3\)               (B) \(-3\sqrt{x}+3\)                (C) \(\frac{-\sqrt[4]{x}+3}{x\sqrt[4]{x^{3}}}\)               (D) \(\frac{\sqrt{x}-3}{x\sqrt[4]{x}}\)

▶️Answer/Explanation

Ans:

5. C

5. If \(y=4\sqrt{x}-16\sqrt[4]{x}\), then \({y}”=\)

(A) \(\sqrt[4]{x}-3\)               (B) \(-3\sqrt{x}+3\)                (C) \(\frac{-\sqrt[4]{x}+3}{x\sqrt[4]{x^{3}}}\)               (D) \(\frac{\sqrt{x}-3}{x\sqrt[4]{x}}\)

▶️Answer/Explanation

Ans:

5. C

6. If \(y=x^{2}\cdot f\left ( x \right )\), then \({y}”=\)

(A) \(x^{2}{f}”\left ( x \right )+x{f}’\left ( x \right )+2f\left ( x \right )\)

(B) \(x^{2}{f}”\left ( x \right )+x{f}’\left ( x \right )+f\left ( x \right )\)

(C) \(x^{2}{f}”\left ( x \right )+2x{f}’\left ( x \right )+f\left ( x \right )\)

(D) \(x^{2}{f}”\left ( x \right )+4x{f}’\left ( x \right )+2f\left ( x \right )\)

▶️Answer/Explanation

Ans:

6. D

7. Let \(f\left ( x \right )=\frac{1}{2}x^{6}-10x^{3}+12x\). What is the value of \(f\left ( x \right )\), when \({f}”\left ( x \right )=0?\)

(A) \(-\frac{23}{4}\)               (B) \(-\frac{3}{2}\)                 (C) \(\frac{1}{2}\)               (D) \(\frac{5}{2}\)

▶️Answer/Explanation

Ans:

7. D

Free Response Questions

8. Let \(h\left ( x \right )=x\cdot f\left ( x \right )\cdot g\left ( x \right )\). Find \({h}’\left ( 1 \right )=-2,g\left ( 1 \right )=3,{f}’\left ( 1 \right )=1,\) and \({g}’\left ( 1 \right )=\frac{1}{2}.\)

▶️Answer/Explanation

Ans:

8. −4

9. Let \(g\left ( x \right )=\frac{x}{\sqrt{x}-1}\). Find \({g}”\left ( 4 \right ).\)

▶️Answer/Explanation

Ans:

9. 1/8

Scroll to Top