Home / AP Calculus AB and BC: Chapter 2 – Differentiation :2.4 -Derivatives of Trigonometric Functions Study Notes

AP Calculus AB and BC: Chapter 2 – Differentiation :2.4 -Derivatives of Trigonometric Functions Study Notes

Derivatives of Trigonometric Functions

Example 1 

  • Find \(\frac{dy}{dx}\) for \(y=x^{2}sinx+2xcosx.\)
▶️Answer/Explanation

Solution

\(\frac{dy}{dx}=x^{2}cos x + sin x\cdot 2x+2\left ( x\left ( -sinx \right ) +cosx\cdot 1\right )\)

\(=x^{2}cos x + 2xsinx-2xsinx+2cosx\)

\(=x^{2}cos x + 2cosx\)

Example 2

  • Find \({y}’\) if \(y=tan^{2}\left ( x^{3} \right ).\)
▶️Answer/Explanation

Solution

\(y=tan^{2}\left ( x^{3} \right )=\left [ tan\left ( x^{3} \right ) \right ]^{2}\)               \(tan^{2}x=\left ( tanx \right )^{2}\)

\({y}’=2\left [ tan\left ( x^{3} \right ) \right ]\frac{d}{dx}\left ( tan\left ( x^{3} \right ) \right )\)               Power Chain Rule

\(=2tan\left ( x^{3} \right )sec^{2}\left ( x^{3} \right )\frac{d}{dx}\left ( x ^{3}\right )\)               Chain Rule

\(=2tan\left ( x^{3} \right )sec^{2}\left ( x^{3} \right )\left ( 3x^{2} \right )\)               Power Rule

\(=6x^{2}tan\left ( x^{3} \right )sec^{2}\left ( x^{3} \right )\)

Exercises – Derivatives of Trigonometric Functions

Multiple Choice Questions

1. \(\underset{h\rightarrow 0}{lim}\frac{cos\left ( \frac{\pi }{3}+h \right )-\frac{1}{2}}{h}=\)

(A) \(-\frac{1}{2}\)               (B) \(-\frac{\sqrt{3}}{2}\)                (C) \(\frac{1}{2}\)               (D) \(\frac{\sqrt{3}}{2}\)

▶️Answer/Explanation

Ans:

1. B

2. \(\underset{h\rightarrow 0}{lim}\frac{sin2\left ( x+h \right )-sin2x}{h}=\)

(A) 2sin 2x               (B) −2sin 2x                (C) 2cos 2x               (D) −2cos 2x

▶️Answer/Explanation

Ans:

2. C

3. If \(f\left ( x \right )=sin\left ( cos2x \right )\), then \({f}’\left ( \frac{\pi }{4} \right )=\)

(A) 0               (B) −1                (C) 1               (D) −2

▶️Answer/Explanation

Ans:

3. D

4. If y=a sin x + b cos x, then y + y ” =

(A) 0               (B) 2 sin a x                (C) 2 cos b x               (D) −2 sin a x

▶️Answer/Explanation

Ans:

4. A

5. \(\frac{d}{dx}sec^{2}\left ( \sqrt{x} \right )=\)

(A) \(\frac{2sec\left ( \sqrt{x} \right )tan\left ( \sqrt{x} \right )}{\sqrt{x}}\)

(B) \(\frac{2sec^{2}\left ( \sqrt{x} \right )tan\left ( \sqrt{x} \right )}{\sqrt{x}}\)

(C) \(\frac{sec^{2}\left ( \sqrt{x} \right )tan\left ( \sqrt{x} \right )}{\sqrt{x}}\)

(D) \(\frac{sec\left ( \sqrt{x} \right )tan\left ( \sqrt{x} \right )}{\sqrt{x}}\)

▶️Answer/Explanation

Ans:

5. C

6. \(\frac{d}{dx}\left [ x^{2}cos2x \right ]=\)

(A) −2x sin 2x

(B) 2x (-x sin 2x + cos 2x)

(C) 2x (x sin 2x – cos 2x)

(D) 2x (x sin 2x – cos 2x)

▶️Answer/Explanation

Ans:

6. B

7. If \(f\left (\Theta \right )=cos\pi -\frac{1}{2cos\Theta }+\frac{1}{3tan\Theta }\), then \({f}’\left ( \frac{\pi }{6} \right )=\)

(A) \(\frac{1}{2}\)               (B) 1                (C) \(\frac{4}{\sqrt{3}}\)               (D) \(2\sqrt{3}\)

▶️Answer/Explanation

Ans:

7. B

Free Response Questions

8. The table above gives values of f , f ′ , g , and g′ at selected values of x .

     Find \({h}’\left ( \frac{\pi }{4} \right )\), if \(h\left ( x \right )=f\left ( x \right )\cdot g\left ( tanx \right ).\)

▶️Answer/Explanation

Ans:

8. \(-4\sqrt{4}+3\)

9. Find the value of the constants a and b for which the function

\(f\left ( x \right )=\left\{\begin{matrix}sin x, & x< \pi \\ax + b, & x\geq \pi\end{matrix}\right.\) is differentiable at \(x=\pi .\)

▶️Answer/Explanation

Ans:

9. a = −1

9. b = \(\pi\)

Scroll to Top