Home / AP Calculus AB and BC: Chapter 2 – Differentiation :2.9 -Derivatives of Inverse Trigonometric Functions Study Notes

AP Calculus AB and BC: Chapter 2 – Differentiation :2.9 -Derivatives of Inverse Trigonometric Functions Study Notes

2.9 Derivatives of Inverse Trigonometric Functions

Derivatives of Inverse Trigonometric Functions
$
\begin{array}{ll}
\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^2}} & \frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^2}} \\
\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^2} & \frac{d}{d x}\left(\cot ^{-1} x\right)=-\frac{1}{1+x^2} \\
\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{x \sqrt{x^2-1}} & \frac{d}{d x}\left(\csc ^{-1} x\right)=-\frac{1}{x \sqrt{x^2-1}}
\end{array}
$

Example 

  • Differentiate $y=x \tan ^{-1} x$.
    ▶️Answer/Explanation

    Solution
    $
    \begin{aligned}
    & \text { प } \frac{d y}{d x}=\frac{d}{d x}\left(x \tan ^{-1} x\right) \\
    & \quad=x \frac{d}{d x} \tan ^{-1} x+\tan ^{-1} x \frac{d}{d x}(x) \\
    & \quad=x \cdot \frac{1}{1+x^2}+\tan ^{-1} x \cdot 1 \\
    & \quad=\frac{x}{1+x^2}+\tan ^{-1} x
    \end{aligned}
    $

Example

  • Differentiate $y=\frac{1}{\cos ^{-1} x}$.
    ▶️Answer/Explanation

    Solution
    $
    \begin{aligned}
    y & =\frac{1}{\cos ^{-1} x}=\left(\cos ^{-1} x\right)^{-1} \\
    \frac{d y}{d x} & =\frac{d}{d x}\left(\cos ^{-1} x\right)^{-1} \\
    & =-1\left(\cos ^{-1} x\right)^{-2} \frac{d}{d x}\left(\cos ^{-1} x\right) \\
    & =-\frac{1}{\left(\cos ^{-1} x\right)^2} \cdot-\frac{1}{\sqrt{1-x^2}} \\
    & =\frac{1}{\left(\cos ^{-1} x\right)^2 \sqrt{1-x^2}}
    \end{aligned}
    $
    Power Chain Rule

Exercises – Derivatives of Inverse Trigonometric Functions

Multiple Choice Questions

Example

  • 1. $\frac{d}{d x}\left(\arcsin x^2\right)=$

(A) $-\frac{2 x}{\sqrt{1-x^2}}$

(B) $\frac{2 x}{\sqrt{x^2-1}}$

(C) $\frac{2 x}{\sqrt{x^4-1}}$

(D) $\frac{2 x}{\sqrt{1-x^4}}$

▶️Answer/Explanation

Ans:D

Example

  • 2. If $f(x)=\arctan \left(e^{-x}\right)$, then $f^{\prime}(-1)=$

(A) $\frac{-e}{1+e}$
(B) $\frac{e}{1+e}$
(C) $\frac{-e}{1+e^2}$
(D) $\frac{-1}{1+e^2}$

▶️Answer/Explanation

Ans: C

Example

  • If $f(x)=\arctan (\sin x)$, then $f^{\prime}\left(\frac{\pi}{3}\right)=$

(A) $\frac{2}{7}$

(B) $\frac{1}{2}$

(C) $\frac{\sqrt{2}}{3}$

(D) $\frac{\sqrt{3}}{3}$

▶️Answer/Explanation

Ans:A

Example

  • If $y=\cos \left(\sin ^{-1} x\right)$, then $y^{\prime}=$

(A) $-\frac{1}{\sqrt{1-x^2}}$

(B) $-\frac{x}{\sqrt{1-x^2}}$

(C) $\frac{2 x}{\sqrt{1-x^2}}$

(D) $-\frac{2 x}{\sqrt{x^2-1}}$

▶️Answer/Explanation

Ans:B

Scroll to Top