Home / AP Calculus AB and BC: Chapter 6 – Techniques of Integration

AP Calculus AB and BC: Chapter 6 – Techniques of Integration

 Basic Integration Rules

In this section, we will study several integration techniques for fitting an integrand into one of the basic integration rules. The basic integration rules are reviewed in Table 6.1 on page 252 .

Procedures for Fitting Integrands to Basic Rules

Procedure                                                                                                                  Example

1. Separating numerator                                                                                  $\frac{1-2 x}{1+x^2}=\frac{1}{1+x^2}-\frac{2 x}{1+x^2}$

2. Adding and subtracting terms in numerator                                      $\frac{1}{1-e^x}=\frac{1-e^x+e^x}{1-e^x}=\frac{1-e^x}{1-e^x}+\frac{e^x}{1-e^x}$

3. Dividing improper fractions                                                                       $\frac{x^3-3 x}{x^2-1}=x-\frac{2 x}{x^2-1}$

4. Completing the square                                                                                $\frac{1}{\sqrt{4 x-x^2}}=\frac{1}{\sqrt{4-(x-2)^2}}$

Other integration techniques, such as the simple substitution method, were covered in section 4.8. Using trigonometric identities, trigonometric substitution, Method of Partial Fractions and Integration by Parts will be covered later in this chapter.

1. Separating numerator

Example 1

  • Evaluate $\int \frac{1-2 x}{1+x^2} d x$.
Answer/Explanation

Solution

$\int \frac{1-2 x}{1+x^2} d x=\int \frac{1}{1+x^2} d x+\int \frac{-2 x}{1+x^2} d x$                                                Separate the numerator

$\int \frac{1}{1+x^2} d x=\arctan x$                                                                                                                                   Basic integration rules

$\int \frac{-2 x}{1+x^2} d x=\int \frac{-d u}{u}=-\ln u$                                                                                                  Let $u=1+x^2$, then $d u=2 x d x$.

Therefore $\int \frac{1-2 x}{1+x^2} d x=\arctan x-\ln \left(1+x^2\right)+C$.

Differentiation Rules and Basic Integration Rules

2. Adding and subtracting terms in numerator

Example 2

  • Evaluate $\int \frac{1}{1-e^x} d x$.
Answer/Explanation

Solution   
$\int \frac{1}{1-e^x} d x=\int \frac{1-e^x+e^x}{1-e^x} d x$                                          Add and subtract $e^x$ in the numerator.

$=\int \frac{1-e^x}{1-e^x} d x+\int \frac{e^x}{1-e^x} d x$                                                              Separate the numerator

$=\int d x+\int \frac{e^x}{1-e^x} d x$

$=x-\ln \left(1-e^x\right)+C$                                                                                                                        Use the basic integration rules.

3. Dividing improper fractions

Example 3

  • Evaluate $\int \frac{x^3-3 x}{x^2-1} d x$.
Answer/Explanation

Solution
$
\int \frac{x^3-3 x}{x^2-1} d x=\int\left(x-\frac{2 x}{x^2-1}\right) d x
$                                                                                                                                                                Divide an improper fraction.

$=\int x d x-\int \frac{2 x}{x^2-1} d x$

$=\frac{1}{2} x^2-\ln \left(x^2-1\right)+C $ Use the basic integration rules.

Example4

  • $
    \int \frac{1+\sin x}{\cos ^2 x} d x=
    $

(A) $\tan x-\sec x \tan x+C$

(B) $\tan x+\sec x+C$

(C) $\tan x+\sec ^2 x+C$

(D) $\ln \left(1+\cos ^2 x\right)+C$

▶️Answer/Explanation

Ans:B

Example5

  • $
    \int 2 \tan x \ln (\cos x) d x=
    $

(A) $\cos x[\ln (\cos x)]+C$

(B) $\sin x[\ln (\cos x)]+C$

(C) $-[\ln (\cos x)]^2+C$

(D) $[\ln (\sin x)]^2+C$

▶️Answer/Explanation

Ans:D

Example6

  • $
    \int 2 \tan x \ln (\cos x) d x=
    $

(A) $\cos x[\ln (\cos x)]+C$

(B) $\sin x[\ln (\cos x)]+C$

(C) $-[\ln (\cos x)]^2+C$

(D) $[\ln (\sin x)]^2+C$

▶️Answer/Explanation

Ans:C

6.2 Trigonometric Integrals

Trigonometric Identities
$
\begin{aligned}
& \sin ^2 x+\cos ^2 x=1 \quad \tan ^2 x+1=\sec ^2 x \quad \cot ^2 x+1=\csc ^2 x \\
& \sin ^2 x=\frac{1-\cos 2 x}{2} \quad \cos ^2 x=\frac{1+\cos 2 x}{2} \\
& \sin 2 x=2 \sin x \cos x
\end{aligned}
$

Guidelines for Evaluating $\int \sin ^m x \cos ^n x d x$.
1. If $m$ is odd, save one sine factor and use $\sin ^2 x=1-\cos ^2 x$ to express the remaining factor in terms of cosine.

Example 1

  • Evaluate $\int \sin ^3 x \cos ^2 x d x$
Answer/Explanation

Solution
$\begin{array}{lll}=\int \sin ^2 x \cos ^2 x(\sin x) d x & & \text { One sine factor is saved. } \\ =\int\left(1-\cos ^2 x\right) \cos ^2 x(\sin x) d x & & \sin ^2 x=1-\cos ^2 x \\ =\int\left(\cos ^2 x-\cos ^4 x\right) \sin x d x & & \text { Multiply. } \\ =\int\left(u^2-u^4\right)(-d u) & & u=\cos x, d u=-\sin x d x \\ =-\frac{1}{3} \cos ^3 x+\frac{1}{5} \cos ^5 x+C & \end{array}$

2. If $n$ is odd, save one cosine factor and use $\cos ^2 x=1-\sin ^2 x$ to express the remaining factor in terms of sine.

Example 2

  • Evaluate $\int \cos ^5 x d x$
Answer/Explanation

Solution 

$\int \cos ^5 x d x$

$=\int \cos ^4 x(\cos x) d x$                                                     One cosine factor is saved.

$=\int\left(1-\sin ^2 x\right)^2 \cos x d x                                  \quad \cos ^2 x=1-\sin ^2 x$

$=\int\left(1-u^2\right)^2 d u \quad u=\sin x, d u=\cos x d x$

$=\int\left(1-2 u^2+u^4\right) d u$                                                     Multiply.

$\begin{aligned} & =u-\frac{2}{3} u^3+\frac{1}{5} u^5+C \\ & =\sin x-\frac{2}{3} \sin ^3 x+\frac{1}{5} \sin ^5 x+C\end{aligned}$

Example3

  • If both $m$ and $n$ are even, substitute $\sin ^2 x=\frac{1-\cos 2 x}{2}$ and $\cos ^2 x=\frac{1+\cos 2 x}{2}$ to reduce the integrand to lower powers of $\cos 2 x$.

Evaluate $\int \sin ^2 x \cos ^2 x d x$.

▶️Answer/Explanation

Solution
$
\begin{aligned}
& \int \sin ^2 x \cos ^2 x d x \\
& =\int\left(\frac{1-\cos 2 x}{2}\right)\left(\frac{1+\cos 2 x}{2}\right) d x \quad \sin ^2 x=\frac{1-\cos 2 x}{2}, \cos ^2 x=\frac{1+\cos 2 x}{2} \\
& =\frac{1}{4} \int\left(1-\cos ^2 2 x\right) d x \\
& =\frac{1}{4} \int\left(1-\frac{1+\cos 4 x}{2}\right) d x \quad \cos ^2 2 x=\frac{1+\cos 4 x}{2} \\
& =\frac{1}{8} \int(1-\cos 4 x) d x \\
& =\frac{1}{8} x-\frac{1}{32} \sin 4 x+C \\
&
\end{aligned}
$

Example5

  • $
    \int \sin ^3 n x d x=
    $

(A) $\frac{1}{3 n} \sin ^3 n x-\frac{1}{n} \sin n x+C$

(B) $\frac{1}{3 n} \cos ^3 n x-\frac{1}{n} \cos n x+C$

(C) $\frac{1}{3 n} \sin ^3 n x-\frac{1}{n} \sin n x+C$

(D) $\frac{1}{3 n} \cos ^3 n x-\frac{1}{n} \sin n x+C$

▶️Answer/Explanation

Ans:B

Example6

  • $
    \int \cos ^3 x \sqrt{\sin x} d x=
    $

(A) $\frac{1}{3}(\cos x)^3-\frac{2}{5}(\cos x)^{5 / 2}+C$

(B) $\frac{2}{3}(\cos x)^{3 / 2}-\frac{2}{7}(\sin x)^{7 / 2}+C$

(C) $\frac{2}{3}(\sin x)^{3 / 2}-\frac{2}{7}(\sin x)^{7 / 2}+C$

(D) $\frac{2}{3}(\sin x)^{3 / 2}-\frac{2}{5}(\cos x)^{5 / 2}+C$

▶️Answer/Explanation

Ans:C

6.3 Trigonometric Substitutions

Trigonometric Substitution
1. For integrals involving $\sqrt{a^2-u^2}$, let $u=a \sin \theta$. Then
$
\sqrt{a^2-u^2}=\sqrt{a^2-a^2 \sin ^2 \theta}=\sqrt{a^2\left(1-\sin ^2 \theta\right)}=\sqrt{a^2 \cos ^2 \theta}=a \cos \theta
$

2. For integrals involving $\sqrt{a^2+u^2}$, let $u=a \tan \theta$. Then
$
\sqrt{a^2+u^2}=\sqrt{a^2+a^2 \tan ^2 \theta}=\sqrt{a^2\left(1+\tan ^2 \theta\right)}=\sqrt{a^2 \sec ^2 \theta}=a \sec \theta
$

3. For integrals involving $\sqrt{u^2-a^2}$, let $u=a \sec \theta$. Then
$
\sqrt{u^2-a^2}=\sqrt{a^2 \sec ^2 \theta-a^2+}=\sqrt{a^2\left(\sec ^2 \theta-1\right)}=\sqrt{a^2 \tan ^2 \theta}=a \tan \theta
$

Note: $\operatorname{arcsec} x=\arccos \frac{1}{x}$
$
\operatorname{arccsc} x=\arcsin \frac{1}{x}
$

Example 1

  • Evaluate $\int_0^2 \sqrt{4-x^2} d x$.
Answer/Explanation

Solution 

$\begin{aligned} & x=2 \sin \theta, d x=2 \cos \theta d \theta \\ & \sqrt{4-4 \sin ^2 \theta}=\sqrt{4\left(1-\sin ^2 \theta\right)}=2 \cos \theta \\ & \cos ^2 \theta=\frac{1+\cos 2 \theta}{2}\end{aligned}$

$\begin{aligned} & =2 \sin ^{-1}\left(\frac{x}{2}\right)+2\left(\frac{x}{2}\right)\left(\frac{\sqrt{4-x^2}}{2}\right)+C \\ & =2 \sin ^{-1}\left(\frac{x}{2}\right)+\frac{x \sqrt{4-x^2}}{2}+C\end{aligned}$

$\begin{aligned} & \int \sqrt{4-x^2} d x \\ & =\int \sqrt{4-4 \sin ^2 \theta} 2 \cos \theta d \theta \\ & =4 \int \cos ^2 \theta d \theta \\ & =4 \int \frac{1+\cos 2 \theta}{2} d \theta \\ & =2 \int(1+\cos 2 \theta) d \theta \\ & =2\left(\theta+\frac{1}{2} \sin 2 \theta\right)+C=2 \theta+\sin 2 \theta+C \\ & =2 \theta+2 \sin \theta \cos \theta+C \\ & =2 \sin ^{-1}\left(\frac{x}{2}\right)+2\left(\frac{x}{2}\right)\left(\frac{\sqrt{4-x^2}}{2}\right)+C \\ & =2 \sin ^{-1}\left(\frac{x}{2}\right)+\frac{x \sqrt{4-x^2}}{2}+C \\ & \end{aligned}$

Therefore
$
\int_0^2 \sqrt{4-x^2} d x=\left[2 \sin ^{-1}\left(\frac{x}{2}\right)+\frac{x \sqrt{4-x^2}}{2}\right]_0^2=2 \sin ^{-1}(1)=2 \cdot \frac{\pi}{2}=\pi
$

Example2

  • Evaluate $\int \frac{d x}{\sqrt{9+x^2}}$.
Answer/Explanation

Solution 

$x=3 \tan \theta, d x=3 \sec ^2 \theta d \theta$

$\begin{aligned} & \int \frac{d x}{\sqrt{9+x^2}} \\ & =\int \frac{3 \sec ^2 \theta d \theta}{\sqrt{9+9 \tan ^2 \theta}} \\ & =\int \frac{3 \sec ^2 \theta d \theta}{3 \sec \theta} \\ & =\int \sec \theta d \theta \\ & =\ln |\sec \theta+\tan \theta|+C \\ & =\ln \left|\frac{\sqrt{9+x^2}}{3}+\frac{x}{3}\right|+C\end{aligned}$

Example 3

  • $\begin{aligned} & x=2 \sec \theta, d x=2 \sec \theta \tan \theta d \theta \\ & \sqrt{4 \sec ^2 \theta-4}=\sqrt{4\left(\sec ^2 \theta-1\right)}=2 \tan \theta\end{aligned}$

▶️Answer/Explanation

$\begin{aligned} & \int \frac{d x}{x^2 \sqrt{x^2-4}} \\ & =\int \frac{2 \sec \theta \tan \theta d \theta}{4 \sec ^2 x \sqrt{4 \sec ^2 \theta-4}} \\ & =\int \frac{2 \sec \theta \tan \theta d \theta}{4 \sec ^2 \theta 2 \tan \theta} \\ & =\frac{1}{4} \int \frac{d \theta}{\sec \theta} \\ & =\frac{1}{4} \int \cos \theta d \theta \\ & =\frac{1}{4} \sin \theta+C \\ & =\frac{1}{4} \frac{\sqrt{x^2-4}}{x}+C\end{aligned}$

Example4

  • If the substitution $x=2 \tan \theta$ is made in $\int \frac{x^3}{\sqrt{x^2+4}} d x$, where $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$, the resulting integral is

(A) $4 \int \tan ^2 \theta \sec \theta d \theta$

(B) $4 \int \tan ^2 \theta \sec ^2 \theta d \theta$

(C) $8 \int \tan ^3 \theta d \theta$

(D) $8 \int \tan ^3 \theta \sec \theta d \theta$

▶️Answer/Explanation

Ans:D

Example5

  • $
    \int_{\sqrt{2}}^2 \frac{1}{x \sqrt{x^2-1}} d x=
    $

(A) $\frac{\pi}{18}$

(B) $\frac{\pi}{12}$

(C) $\frac{\pi}{6}$

(D) $\frac{\pi}{4}$

▶️Answer/Explanation

Ans:B

Example6

  • $
    \int \frac{1}{x^2 \sqrt{25-x^2}} d x=
    $

(A) $-\frac{\sqrt{25-x^2}}{5 x^2}+C$

(B) $-\frac{\sqrt{25-x^2}}{25}+C$

(C) $-\frac{\sqrt{25-x^2}}{25 x}+C$

(D) $\frac{\sqrt{25-x^2}}{25 x^2}+C$

▶️Answer/Explanation

Ans:C

Example6

  • If the substitution $x=\sec \theta$ is made in $\int \frac{\sqrt{x^2-1}}{x^4} d x$, where $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$, the resulting integral is

(A) $\int \sec ^2 \theta \tan \theta d \theta+C$

(B) $\int \sec \theta \tan ^2 \theta d \theta+C$

(C) $\int \sin \theta \cos ^2 \theta d \theta+C$

(D) $\int \sin ^2 \theta \cos \theta d \theta+C$

▶️Answer/Explanation

Ans:D

6.4 L’Hospital’s Rule

L’Hospital’s Rule
Suppose $f$ and $g$ are differentiable and $g^{\prime}(x) \neq 0$ near $x=c$ (except possibly at $c$ ).
If the limit of $\frac{f(x)}{g(x)}$ as $x$ approaches $c$ produces the indeterminate form $\frac{0}{0}$ or $\frac{\infty}{\infty}$, then

$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$
provided the limit on the right side exists.
L’Hospital’s Rule can be applied only to quotients leading to indeterminate forms such as

$\frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, 1^{\infty}, \infty^0, 0^0$, and $\infty-\infty$.

L’Hospital’s Rule does not apply when either the numerator or denominator has a finite nonzero limit.

Example 1

  • Find $\lim _{x \rightarrow 0} \frac{e^x-1}{\sin x}$
Answer/Explanation

Solution

Indeterminate form $\frac{0}{0}$
L’Hospital’s Rule: $\frac{d}{d x}\left(e^x-1\right)=e^x, \frac{d}{d x}(\sin x)=\cos x$. $e^0=1$ and $\cos 0=1$

$e^0=1$ and $\cos 0=1$.

$\begin{aligned} & \lim _{x \rightarrow 0} \frac{e^x-1}{\sin x} \\ & =\lim _{x \rightarrow 0} \frac{e^x}{\cos x} \\ & =1\end{aligned}$

Example 2

  • Find $\lim _{x \rightarrow \pi / 2} \frac{\sec x+9}{\tan x}$.
Answer/Explanation

Solution

$\lim _{x \rightarrow \pi / 2} \frac{\sec x+9}{\tan x}$ Indeterminate form $\frac{\infty}{\infty}$.

$=\lim _{x \rightarrow \pi / 2} \frac{\sec x \tan x}{\sec ^2 x}$                    L’Hospital’s Rule: $\frac{d}{d x}(\sec x+9)=\sec x \tan x$,

$\frac{d}{d x}(\tan x)=\sec ^2 x$

$=\lim _{x \rightarrow \pi / 2} \frac{\tan x}{\sec x}$                                                                  Simplify

$\begin{aligned} & =\lim _{x \rightarrow \pi / 2} \sin x \\ & =1\end{aligned}$

Example 3

  • Find $\lim _{x \rightarrow \infty} x \tan \frac{1}{x}$.
▶️Answer/Explanation

Solution

$
\begin{array}{ll}
\lim _{x \rightarrow 0} \frac{e^x-1}{\sin x} & \text { Indeterminate form } \frac{0}{0} \\
=\lim _{x \rightarrow 0} \frac{e^x}{\cos x} & \text { L’Hospital’s Rule: } \frac{d}{d x}\left(e^x-1\right)=e^x, \frac{d}{d x}(\sin x)=\cos x . \\
=1 & e^0=1 \text { and } \cos 0=1 .
\end{array}
$

Example4

  • $
    \lim _{x \rightarrow 0} \frac{e^x-1-x}{x^2}=
    $

(A) 0

(B) $\frac{1}{2}$

(C) 1

(D) $\infty$

▶️Answer/Explanation

Ans:B

Example5

  • $
    \lim _{x \rightarrow 0} \frac{\sin ^{-1} x}{x}=
    $

(A) $-\infty$

(B) 0

(C) $\frac{\pi}{2}$

(D) 1

▶️Answer/Explanation

Ans:D

Example5

$
\lim _{\theta \rightarrow \pi} \frac{\sin \theta}{\theta-\pi}=
$

(A) -1

(B) $-\frac{1}{2}$

(C) 0

(D) $\frac{1}{2}$

▶️Answer/Explanation

Ans:A

6.5 Integration by Partial Fractions

A method for rewriting a rational function into the sum of simpler rational functions is called the method of partial fractions. For instance, the rational function $\frac{5 x+1}{x^2+x-2}$ can be written

as $\frac{5 x+1}{x^2+x-2}=\frac{2}{x-1}+\frac{3}{x+2}$.

We call the fractions $\frac{2}{x-1}$ and $\frac{3}{x+2}$ partial fractions because their denominators are only part of the original denominator. To integrate the rational function $\frac{5 x+1}{x^2+x-2}$, we simply sum the integrals of the partial fractions.
$
\int \frac{5 x+1}{x^2+x-2} d x=\int \frac{2}{x-1} d x+\int \frac{3}{x+2} d x=2 \ln |x-1|+3 \ln |x+2|+C
$

Example 1

  • Evaluate $\int \frac{x^3}{x^2-1} d x$.
Answer/Explanation

Solution 

If the degree of the numerator is greater than or equal to the degree of the denominator, divide numerator by the denominator to get a polynomial plus a proper fraction.

Then we write the improper fraction as a polynomial plus a proper fraction.
$
\frac{x^3}{x^2-1}=x+\frac{x}{x^2-1}
$

Write $\frac{x}{x^2-1}=\frac{x}{(x+1)(x-1)}=\frac{A}{x+1}+\frac{B}{x-1}$.
Multiplying both sides by $(x+1)(x-1)$, we have $x=A(x-1)+B(x+1)$
Let $x=1$. Then $1=A(1-1)+B(1+1) \Rightarrow B=\frac{1}{2}$.
Let $x=-1$. Then $-1=A(-1-1)+B(-1+1) \Rightarrow A=\frac{1}{2}$.
Thus, $\int \frac{x^3}{x^2-1} d x=\int x d x+\frac{1}{2} \int \frac{1}{x+1} d x+\frac{1}{2} \int \frac{1}{x-1} d x$ $=\frac{1}{2} x^2+\frac{1}{2} \ln |x+1|+\frac{1}{2} \ln |x-1|+C$.

Example 2

  • Evaluate $\int \frac{x+10}{(x-4)(x+3)} d x$
Answer/Explanation

Solution 

If the denominator is a product of distinct linear factors, then the partial fraction decomposition has the form
$
\frac{x+10}{(x-4)(x+3)}=\frac{A}{x-4}+\frac{B}{x+3}
$
To find the values of $A$ and $B$, multiply both sides of the equation by the least common denominator and get $x+10=A(x+3)+B(x-4)$
To solve for $A$, choose $x=4$, to eliminate the term $B(x-4)$.
$
4+10=A(4+3)+B(4-4) \Rightarrow 14=7 A \Rightarrow A=2
$
To solve for $B$, choose $x=-3$, to eliminate the term $A(x+3)$.
$
\begin{aligned}
& -3+10=A(-3+3)+B(-3-4) \Rightarrow 7=-7 B \Rightarrow B=-1 \\
& \int \frac{x+10}{(x-4)(x+3)} d x=\int \frac{2}{(x-4)} d x+\int \frac{-1}{(x+3)} d x \\
& =2 \ln |x-4|-\ln |x+3|+C \\
&
\end{aligned}
$

Example3

  • $
    \int \frac{d x}{x^2+x-6}=
    $

(A) $\frac{1}{5} \ln \left|\frac{x-1}{x+6}\right|+C$

(B) $\frac{1}{5} \ln \left|\frac{x+3}{x-2}\right|+C$

(C) $\frac{1}{5} \ln \left|\frac{x-2}{x+3}\right|+C$

(D) $\frac{1}{5} \ln |(x-2)(x+3)|+C$

▶️Answer/Explanation

Ans:C

Example4

  • $
    \int_4^7 \frac{5}{(x-2)(2 x+1)} d x=
    $

(A) $\ln \frac{9}{10}$

(B) $\ln \frac{10}{9}$

(C) $\ln \frac{3}{2}$

(D) $\ln \frac{9}{4}$

▶️Answer/Explanation

Ans:C

Example5

  • $
    \int \frac{x}{x^2+5 x+6} d x=
    $

(A) $-2 \ln |x+2|+3 \ln |(x+3)|+C$

(B) $2 \ln |x+2|+3 \ln |(x+3)|+C$

(C) $2 \ln |(x+3)|-3 \ln |x+2|+C$

(D) $-2 \ln |(x+3)|-3 \ln |x+2|+C$

▶️Answer/Explanation

Ans:A

Example6

  • $
    \int \frac{2 e^{2 x}}{\left(e^x-1\right)\left(e^x+1\right)} d x=
    $

(A) $\ln \left|e^x\left(e^{2 x}-1\right)\right|+C$

(B) $\ln \left|2 e^x\left(e^{2 x}-1\right)\right|+C$

(C) $\ln \left|\frac{1}{e^{2 x}-1}\right|+C$

(D) $\ln \left|\left(e^x-1\right)\left(e^x+1\right)\right|+C$

▶️Answer/Explanation

Ans:A

6.6 Integration by Parts $B C$

Integration by Parts Formula
If $u$ and $v$ are functions of $x$ and have continuous derivatives, then
$
\int u d v=u v-\int v d u
$
Guidelines for Integration by Parts
1. For integrals of the form
$\int x^n e^{a x} d x, \int x^n \sin a x d x$, or $\int x^n \cos a x d x$
let $u=x^n$ and let $d v=e^{a x} d x, \sin a x d x$, or $\cos a x d x$.

2. For integrals of the form
$\int x^n \ln x d x, \int x^n \arcsin a x d x, \int x^n \arccos a x d x$, or $\int x^n \arctan a x d x$ let $u=\ln x, \arcsin a x, \arccos a x$, or $\arctan a x$ and let $d v=x^n d x$.

3. For integrals of the form
$\int e^{a x} \sin b x d x$ or $\int e^{a x} \cos b x d x$
let $u=\sin b x$ or $\cos b x$ and let $d v=e^{a x} d x$.

Example1

  • Find $\int x \sin x d x$
Answer/Explanation

Solution
Let $u=x$ and $d v=\sin x d x$.
Then $d u=d x$ and $v=\int \sin x d x=-\cos x$.
$
\begin{aligned}
& \int \stackrel{u}{x} \overbrace{\sin x d x}^{d v}=\stackrel{u}{x} \overbrace{(-\cos x)}^v-\int \overbrace{(-\cos x)}^v \overbrace{d x}^{d u} \\
& =-x \cos x+\int \cos x d x \\
& =-x \cos x+\sin x+C \\
&
\end{aligned}
$

Example 2

  • Evaluate $\int \arctan x d x$
Answer/Explanation

Solution 
Let $u=\arctan x$ and $d v=d x$.
Then $d u=\frac{1}{1+x^2} d x$ and $v=\int d x=x$
$
\begin{aligned}
& \int \overbrace{\arctan x}^u \overbrace{d x}^{d y}=\overbrace{\arctan x}^u \cdot \overbrace{x}^v-\int \frac{v}{x \cdot} \overbrace{\frac{1}{1+x^2} d x}^{d u} \\
& =x \arctan x-\int \frac{x}{1+x^2} d x \\
& =x \arctan x-\frac{1}{2} \ln \left(1+x^2\right)+C
\end{aligned}
$

Tabular Method

In problems involving repeated applications of integration by parts, a tabular method can help to organized the work. This method works well for integrals of the form $\int x^n e^{a x} d x, \int x^n \sin a x d x$, and $\int x^n \cos a x d x$.

Example 3

  • Evaluate $\int x^2 e^x d x$
Answer/Explanation

Solution 
Let $u=x^2$ and $d v=e^x d x$.

Hence, $\int x^2 e^x d x=x^2 e^x-2 x e^x+2 e^x+C$

Example 4

  • Evaluate $\int e^{2 x} \cos x d x$
Answer/Explanation

Solution 
Let $u=\cos x$ and $d v=e^{2 x} d x$.

We stop differentiating and integrating as soon as we reach a row that is the same as the first row except for multiplicative constants. The table is interpreted as follow.
$
\int e^{2 x} \cos x d x=\frac{1}{2} e^{2 x} \cos x-\frac{1}{4} e^{2 x}(-\sin x)+\int \overbrace{\frac{1}{4} e^{2 x}(-\cos x)}^{\text {Product of the last row }} d x
$
By adding $\int \frac{1}{4} e^{2 x}(\cos x) d x$ on each side we get,
$
\frac{5}{4} \int e^{2 x} \cos x d x=\frac{1}{2} e^{2 x} \cos x+\frac{1}{4} e^{2 x}(\sin x) .
$
Therefore, $\int e^{2 x} \cos x d x=\frac{2}{5} e^{2 x} \cos x+\frac{1}{5} e^{2 x} \sin x+C$.

Example4

  • $
    \int x \sin (2 x) d x=
    $

(A) $-x \cos (2 x)+\frac{1}{2} \sin (2 x)+C$

(B) $\frac{x}{2} \cos (2 x)-\frac{1}{4} \sin (2 x)+C$

(C) $-\frac{x}{2} \cos (2 x)+\frac{1}{4} \sin (2 x)+C$

(D) $\frac{x}{2} \cos (2 x)+\frac{1}{4} \sin (2 x)+C$

▶️Answer/Explanation

Ans:C

Example4

  • $
    \int_0^2 x e^x d x=
    $

(A) $e^2-1$

(B) $e^2+1$

(C) $e-1$

(D) $e+1$

▶️Answer/Explanation

Ans:B

Example6

  • If $\int x^2 \cos (3 x) d x=f(x)-\frac{2}{3} \int x \sin (3 x) d x$, then $f(x)=$

(A) $\frac{2}{3} x \sin (3 x)$

(B) $\frac{1}{3} x^2 \sin (3 x)$

(C) $\frac{2}{3} x \cos (3 x)$

(D) $\frac{1}{3} x \sin (3 x)-\frac{2}{3} \cos (3 x)$

▶️Answer/Explanation

Ans:B

6.7 Improper Integrals $B C$

Improper Integrals with Infinite Integration Limits
1. If $f(x)$ is continuous on $[a, \infty)$, then
$
\int_a^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_a^b f(x) d x
$

2. If $f(x)$ is continuous on $(-\infty, b]$, then
$
\int_{-\infty}^b f(x) d x=\lim _{a \rightarrow-\infty} \int_a^b f(x) d x
$

3. If $f(x)$ is continuous on $(-\infty, \infty)$, then
$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^c f(x) d x+\int_c^{\infty} f(x) d x
$

where $c$ is any real number.

Improper Integrals with Infinite Discontinuities
1. If $f(x)$ is continuous on $[a, b)$ and has an infinite discontinuity at $b$, then
$
\int_a^b f(x) d x=\lim _{c \rightarrow b^{-}} \int_a^c f(x) d x
$

2. If $f(x)$ is continuous on $(a, b]$ and has an infinite discontinuity at $a$, then
$
\int_a^b f(x) d x=\lim _{c \rightarrow a^{+}} \int_c^b f(x) d x
$

3. If $f(x)$ is continuous on $[a, b]$, except for some number $c$ in $(a, b)$ at which $f$ has an infinite discontinuity, then
$
\int_a^b f(x) d x=\int_a^c f(x) d x+\int_c^b f(x) d x
$
where $c$ is any real number.
In each case, if the limit is finite we say that the improper integral converges and that the limit is the value of the improper integral. If the limit fails to exists, the improper integral diverges.

Example 1

  • Evaluate $\int_0^{\infty} x e^{-x^2} d x$
Answer/Explanation

Solution 
$
\begin{aligned}
& \int_0^{\infty} x e^{-x^2} d x \\
& =\lim _{b \rightarrow \infty} \int_0^b x e^{-x^2} d x=\lim _{b \rightarrow \infty}\left[-\frac{1}{2} e^{-x^2}\right]_0^b \\
& =-\frac{1}{2} \lim _{b \rightarrow \infty}\left[e^{-b^2}-e^0\right]=-\frac{1}{2}(0-1)=\frac{1}{2}
\end{aligned}
$

Example2

  • Evaluate $\int_{-\infty}^{\infty} \frac{d x}{1+x^2}$
Answer/Explanation

Solution

$\begin{aligned} & \int_{-\infty}^{\infty} \frac{d x}{1+x^2}=\int_{-\infty}^0 \frac{d x}{1+x^2}+\int_0^{\infty} \frac{d x}{1+x^2} \\ & =\lim _{a \rightarrow-\infty} \int_a^0 \frac{d x}{1+x^2}+\lim _{b \rightarrow \infty} \int_0^b \frac{d x}{1+x^2} \\ & =\lim _{a \rightarrow-\infty}\left[\tan ^{-1} x\right]_a^0+\lim _{b \rightarrow \infty}\left[\tan ^{-1} x\right]_0^b \\ & =\lim _{a \rightarrow-\infty}\left(\tan ^{-1} 0-\tan ^{-1} a\right)+\lim _{b \rightarrow \infty}\left(\tan ^{-1} b-\tan ^{-1} 0\right) \\ & =\left(0-\left(-\frac{\pi}{2}\right)\right)+\left(\frac{\pi}{2}-0\right)=\pi\end{aligned}$

Example3

  • Evaluate $\int_1^5 \frac{d x}{\sqrt{x-1}}$
Answer/Explanation

Solution

$\begin{aligned} & \int_1^5 \frac{d x}{\sqrt{x-1}} \\ & =\lim _{b \rightarrow 1^{+}} \int_b^5 \frac{d x}{\sqrt{x-1}}=\lim _{b \rightarrow 1^{+}}[2 \sqrt{x-1}]_b^5 \\ & =\lim _{b \rightarrow 1^{+}}[2 \sqrt{4}-2 \sqrt{b-1}] \\ & =4\end{aligned}$

Example 5

Find $\int_0^1 \frac{d x}{1-x}$.

Answer/Explanation

Solution

$\begin{aligned} & \int_0^1 \frac{d x}{1-x} \\ & =\lim _{b \rightarrow 1^{-}} \int_0^b \frac{d x}{1-x}=\lim _{b \rightarrow 1^{-}}[-\ln |1-x|]_0^b \\ & =\lim _{b \rightarrow 1^{-}}[-\ln |1-b|+\ln 1] \\ & =\infty\end{aligned}$

Example6

$
\int_2^{\infty} \frac{1}{\sqrt{x-1}} d x=
$

(A) $-\infty$

(B) -2

(C) 1

(D) $\infty$

▶️Answer/Explanation

Ans:D

Example7

  • $
    \int_0^{\infty} \frac{1}{(x+3)(x+4)} d x=
    $

(A) $-\ln \frac{4}{3}$

(B) $-\ln \frac{3}{4}$

(C) 0

(D) $\ln 4$

▶️Answer/Explanation

Ans:B

Example8

  • $
    \int_0^{\infty} x^2 e^{-x^3}=
    $

(A) $\frac{1}{3}$

(B) $\frac{1}{2}$

(C) 1

(D) divergent

▶️Answer/Explanation

Ans:C

Scroll to Top