Home / AP Calculus AB and BC: Chapter 9 -Infinite Sequences and Series : 9.1 -Sequences and Series Study Notes

AP Calculus AB and BC: Chapter 9 -Infinite Sequences and Series : 9.1 -Sequences and Series Study Notes

9.1 Sequences and Series

A sequence is an ordered list of numbers
$
a_1, a_2, a_3, \ldots, a_n, \ldots
$
whereas a series is an infinite sum of a list of numbers
$
a_1+a_2+a_3+\cdots+a_n+\cdots
$
Mathematically, a sequence is defined as a function whose domain is the set of positive integers.
If a sequence $\left\{a_n\right\}$ has the limit $L$, where $L$ is a real number, it is written as
$
\lim _{n \rightarrow \infty} a_n=L
$
and we say the sequence converges to $L$. If the sequence does not have a limit we say the sequence diverges.
Given a sequence of numbers of $\left\{a_n\right\}$, an expression of the form
$
\sum_{n=1}^{\infty} a_n=a_1+a_2+a_3+\cdots+a_n+\cdots
$
is an infinite series.
For the infinite series $\sum a_n$, the $\boldsymbol{n}$ th partial sum is given by
$
s_n=\sum_{i=1}^n a_i=a_1+a_2+a_3+\cdots+a_n
$

If the sequence of partial sums converges to a limit $L$, we say that the series converges, and its sum is $L$. If the series does not converge, we say that the series diverges.
The geometric series $a+a r+a r^2+\cdots+a r^{n-1}+\cdots$ converges to the sum
$
\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-\boldsymbol{r}}, \text { if }|r|<1 .
$
If $|r| \geq 1$, the series diverges.
A series is a telescoping series if it is in the form
$
\left(a_1-a_2\right)+\left(a_2-a_3\right)+\left(a_3-a_4\right)+\left(a_4-a_5\right)+\cdots \cdot
$
Since the $n$th partial sum of the series is $S_n=a_1-a_{n+1}$, a telescoping series converges if and only if $\lim _{n \rightarrow \infty} a_n=L$, where $L$ is a real number.
The sum of the series is $\boldsymbol{S}=\boldsymbol{a}_1-\boldsymbol{L}$.

Limit of $n$th Term of a Convergent Series
If the series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim _{n \rightarrow \infty} a_n=0$.
The converse of this theorem is not true in general. But the contrapositive of this theorem provides a useful test for divergent series.

$n$th Term Test for Divergence
If $\lim _{n \rightarrow \infty} a_n$ does not exist or $\lim _{n \rightarrow \infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

Example1

  • Find the sum of the series.

(a) $\sum_{n=1}^{\infty} \frac{2^{n+1}}{3^n}$                                                            (b) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$

▶️Answer/Explanation

Solution 

(a)

$\begin{aligned} & \sum_{n=1}^{\infty} \frac{2^{n+1}}{3^n}=\sum_{n=1}^{\infty} \frac{2 \cdot 2^n}{3^n}=2 \sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^n \\ & \sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^n \text { is an infinite geometric series with } a=\frac{2}{3} \text { and } r=\frac{2}{3} \\ & \sum_{n=1}^{\infty} \frac{2^{n+1}}{3^n}=2 \cdot \frac{2 / 3}{1-2 / 3}=4\end{aligned}$

(b) $a_n=\frac{1}{n(n+1)}=\left(\frac{1}{n}-\frac{1}{n+1}\right)$ Partial fractions

$S_n=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{n}-\frac{1}{n+1}\right)=1-\frac{1}{n+1}$

$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\lim _{n \rightarrow \infty} S_n=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n+1}\right)=1$Sum of the telescoping series

Example 2

  • Determine whether the series is convergent or divergent.

(a) $\sum_{n=1}^{\infty} \frac{n}{2 n+3}$                                                       (b) $\sum_{n=1}^{\infty} 2^{-n} 5^n$

▶️Answer/Explanation

Solution 

(a) 

$
\lim _{n \rightarrow \infty} a_n=\lim _{n \rightarrow \infty} \frac{n}{2 n+3}=\frac{1}{2} \neq 0
$
Therefore, the series diverges by the $n$th Term Test for Divergence.

(b)

$\sum_{n=1}^{\infty} 2^{-n} 5^n=\sum_{n=1}^{\infty} \frac{5^n}{2^n}=\sum_{n=1}^{\infty}\left(\frac{5}{2}\right)^n$ is an infinite geometric series with $r=\frac{5}{2}$.
Since $|r|=|5 / 2| \geq 1$, the series diverges

Example 5

  • $
    \sum_{n=1}^{\infty} \frac{(3)^{n+1}}{5^n}=
    $

(A) $\frac{3}{5}$

(B) $\frac{5}{2}$

(C) $\frac{9}{2}$

(D) The series diverges

▶️Answer/Explanation

Ans:C

Example 4

  • If $f(x)=\sum_{n=1}^{\infty}(\tan x)^n$, then $f(1)=$

(A) -2.794

(B) -0.61

(C) 0.177

(D) The series diverges

▶️Answer/Explanation

Ans:D

Example 5

  • $
    \sum_{n=2}^{\infty} \frac{2}{n^2-1}=
    $

(A) 0

(B) $\frac{1}{2}$

(C) 1

(D) $\frac{3}{2}$

▶️Answer/Explanation

Ans:D

Example 7

  • The sum of the geometric series $\frac{2}{21}+\frac{4}{63}+\frac{8}{189}+\ldots$ is

(A) $\frac{5}{21}$

(B) $\frac{2}{7}$

(C) $\frac{4}{7}$

(D) The series diverges

▶️Answer/Explanation

Ans:B

Example 8

  • If $S_n=\left(\frac{3^{n-1}}{(4+n)^{20}}\right)\left(\frac{(7+n)^{20}}{3^n}\right)$, to what number does the sequence $\left\{S_n\right\}$ converge?

(A) $\frac{1}{3}$

(B) $\frac{7}{4}$

(C) $\left(\frac{7}{4}\right)^{20}$

(D) Diverges

▶️Answer/Explanation

Ans:A

Scroll to Top