Home / AP calculus AB and BC concise summary notes / AP Calculus BC 2.9 The Quotient Rule Study Notes

AP Calculus BC 2.9 The Quotient Rule Study Notes

AP Calculus BC 2.9 The Quotient Rule Study Notes - New Syllabus

AP Calculus BC 2.9 The Quotient Rule Study Notes- New syllabus

AP Calculus BC 2.9 The Quotient Rule Study Notes – AP Calculus BC-  per latest AP Calculus BC Syllabus.

LEARNING OBJECTIVE

  • Calculate derivatives of quotients of differentiable functions.

Key Concepts: 

  • Quotient Rule

AP Calculus BC-Concise Summary Notes- All Topic

Quotient Rule

Quotient Rule

The Quotient Rule is used when you’re differentiating a function that is the division of two functions.

Formula: If \( f(x) = \dfrac{u(x)}{v(x)} \), then:

\( f'(x) = \dfrac{u'(x)v(x) – u(x)v'(x)}{[v(x)]^2} \)

Mnemonic: “Low D High minus High D Low over Low squared”

  • Low = denominator
  • High = numerator
  • D = derivative

Example: 

Differentiate \( f(x) = \dfrac{x^2}{x + 1} \)

▶️Answer/Explanation

Let \( u(x) = x^2 \), \( v(x) = x + 1 \)

  • \( u'(x) = 2x \)
  • \( v'(x) = 1 \)

Apply Quotient Rule:

\( f'(x) = \dfrac{2x(x + 1) – x^2(1)}{(x + 1)^2} \)

Simplify numerator:

\( f'(x) = \dfrac{2x^2 + 2x – x^2}{(x + 1)^2} = \dfrac{x^2 + 2x}{(x + 1)^2} \)

Example: 

Differentiate \( f(x) = \dfrac{\sin x}{x^2} \)

▶️Answer/Explanation

Let \( u(x) = \sin x \), \( v(x) = x^2 \)

  • \( u'(x) = \cos x \)
  • \( v'(x) = 2x \)

Apply Quotient Rule:

\( f'(x) = \dfrac{\cos x \cdot x^2 – \sin x \cdot 2x}{x^4} \)

Final Answer: \( f'(x) = \dfrac{x^2 \cos x – 2x \sin x}{x^4} \)

Example: 

Differentiate \( f(x) = \dfrac{\ln x}{x} \)

▶️Answer/Explanation

Let \( u(x) = \ln x \), \( v(x) = x \)

  • \( u'(x) = \frac{1}{x} \)
  • \( v'(x) = 1 \)

Apply Quotient Rule:

\( f'(x) = \dfrac{\frac{1}{x} \cdot x – \ln x \cdot 1}{x^2} = \dfrac{1 – \ln x}{x^2} \)

Example: 

Differentiate \( f(x) = \dfrac{e^x}{\cos x} \)

▶️Answer/Explanation

Let \( u(x) = e^x \), \( v(x) = \cos x \)

  • \( u'(x) = e^x \)
  • \( v'(x) = -\sin x \)

Apply Quotient Rule:

\( f'(x) = \dfrac{e^x \cdot \cos x – e^x \cdot (-\sin x)}{(\cos x)^2} \)

Simplify:

\( f'(x) = \dfrac{e^x(\cos x + \sin x)}{\cos^2 x} \)

Scroll to Top