Home / AP calculus AB and BC concise summary notes / AP Calculus BC 4.7 Using L’Hospital’s Rule for Determining Limits  of Indeterminate Forms Study Notes

AP Calculus BC 4.7 Using L’Hospital’s Rule for Determining Limits  of Indeterminate Forms Study Notes

AP Calculus BC 4.7 Using L’Hospital’s Rule for Determining Limits  of Indeterminate Forms Study Notes - New Syllabus

AP Calculus BC 4.7 Using L’Hospital’s Rule for Determining Limits  of Indeterminate Forms Study Notes- New syllabus

AP Calculus BC 4.7 Using L’Hospital’s Rule for Determining Limits  of Indeterminate Forms Study Notes – AP Calculus BC-  per latest AP Calculus BC Syllabus.

LEARNING OBJECTIVE

  • L’Hospital’s Rule allows us to determine the limits of some indeterminate forms.

Key Concepts: 

  • Using L’Hospital’s Rule for Determining Limits of Indeterminate Forms

AP Calculus BC-Concise Summary Notes- All Topics

L’Hospital’s Rule for Determining Limits of Indeterminate Forms

L’Hospital’s Rule for Determining Limits of Indeterminate Forms

L’Hospital’s Rule is a technique used in calculus to evaluate limits of indeterminate forms such as:

  • \( \frac{0}{0} \)
  • \( \frac{\infty}{\infty} \)

It is based on the derivatives of the numerator and denominator and can simplify difficult limits into solvable forms.

Conditions for L’Hospital’s Rule:

  • The original limit must produce an indeterminate form: \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \).
  • The functions in the numerator and denominator must be differentiable near the point of interest.
  • Apply the rule: \( \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \quad \text{(if limit of RHS exists)} \)

Example:

Evaluate \( \displaystyle \lim_{x \to 0} \frac{\sin x}{x} \)

▶️Answer/Explanation

As \( x \to 0 \), both the numerator and denominator approach 0: \( \frac{\sin x}{x} \to \frac{0}{0} \Rightarrow \text{indeterminate form}. \)

Apply L’Hospital’s Rule:

  • Differentiate numerator: \( \frac{d}{dx}(\sin x) = \cos x \)
  • Differentiate denominator: \( \frac{d}{dx}(x) = 1 \)

Now take the limit: \( \lim_{x \to 0} \frac{\cos x}{1} = \cos(0) = 1 \)

Example:

Evaluate \( \displaystyle \lim_{x \to \infty} \frac{2x^2 + 5x}{3x^2 – x} \)

▶️Answer/Explanation

As \( x \to \infty \), numerator and denominator both → ∞: \( \frac{2x^2 + 5x}{3x^2 – x} \to \frac{\infty}{\infty} \Rightarrow \text{indeterminate form}. \)

Apply L’Hospital’s Rule:

  • Differentiate numerator: \( \frac{d}{dx}(2x^2 + 5x) = 4x + 5 \)
  • Differentiate denominator: \( \frac{d}{dx}(3x^2 – x) = 6x – 1 \)

Now evaluate: \( \lim_{x \to \infty} \frac{4x + 5}{6x – 1} = \lim_{x \to \infty} \frac{4 + \frac{5}{x}}{6 – \frac{1}{x}} = \frac{4}{6} = \frac{2}{3} \)

Other Indeterminate Forms & How to Handle Them

Not all indeterminate forms are simple quotients. Some require algebraic manipulation before L’Hospital’s Rule can be applied:

Indeterminate FormConversion Method
\( 0 \cdot \infty \)Rewrite as a quotient, e.g., \( a(x) \cdot b(x) = \frac{a(x)}{1/b(x)} \) or \( \frac{b(x)}{1/a(x)} \)
\( \infty – \infty \)Combine expressions into a single fraction
\( 1^\infty \), \( 0^0 \), \( \infty^0 \)Take natural logarithm, use L’Hospital’s on the exponent, then exponentiate result

Example:

Evaluate \( \displaystyle \lim_{x \to 0^+} x \ln x \)

▶️Answer/Explanation

As \( x \to 0^+ \):

  • \( x \to 0 \)
  • \( \ln x \to -\infty \)

So, we have \( 0 \cdot (-\infty) \) → indeterminate form.

Rewrite as: \( x \ln x = \frac{\ln x}{1/x} \) Now we have \( \frac{-\infty}{\infty} \), still indeterminate.

Apply L’Hospital’s Rule: \( \lim_{x \to 0^+} \frac{\ln x}{1/x} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} -x = 0 \)

Example:

Evaluate \( \displaystyle \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x \)

▶️Answer/Explanation

This is an indeterminate form of the type \( 1^\infty \).

Let: \( y = \left(1 + \frac{1}{x}\right)^x \Rightarrow \ln y = x \ln \left(1 + \frac{1}{x} \right) \)

Now evaluate: \( \lim_{x \to \infty} \ln y = \lim_{x \to \infty} x \ln \left(1 + \frac{1}{x} \right) \Rightarrow \text{indeterminate: } \infty \cdot 0 \)

Convert and apply L’Hospital’s Rule: \( \lim_{x \to \infty} \frac{\ln \left(1 + \frac{1}{x} \right)}{1/x} \) Differentiate numerator and denominator: \( \frac{\frac{-1}{x^2(1 + \frac{1}{x})}}{-1/x^2} = \frac{1}{1 + \frac{1}{x}} \to 1 \) So, \( \lim_{x \to \infty} \ln y = 1 \Rightarrow y = e^1 = e \)

Example:

Evaluate the following limit:

\( \displaystyle \lim_{x \to \infty} \left( \sqrt{x^2 + x} – x \right) \)

Which of the following is the correct value of the limit?

  1. \( \infty \)
  2. \( 0 \)
  3. \( \dfrac{1}{2} \)
  4. \( 1 \)
  5. Does not exist
▶️Answer/Explanation

This is an indeterminate form of the type \( \infty – \infty \):

\( \sqrt{x^2 + x} – x \approx \text{both terms go to } \infty \)

To resolve this, we rationalize the expression:

\( \sqrt{x^2 + x} – x = \frac{(\sqrt{x^2 + x} – x)(\sqrt{x^2 + x} + x)}{\sqrt{x^2 + x} + x} = \frac{x^2 + x – x^2}{\sqrt{x^2 + x} + x} = \frac{x}{\sqrt{x^2 + x} + x} \)

Now simplify numerator and denominator as \( x \to \infty \):

Factor out \( x \):

\( \frac{x}{\sqrt{x^2(1 + \frac{1}{x})} + x} = \frac{x}{x\sqrt{1 + \frac{1}{x}} + x} = \frac{1}{\sqrt{1 + \frac{1}{x}} + 1} \to \frac{1}{1 + 1} = \frac{1}{2} \)

Correct Answer: (C) \( \dfrac{1}{2} \)

Scroll to Top