Home / AP calculus AB and BC concise summary notes / AP Calculus BC 6.11 Integrating Using Integration Study Notes

AP Calculus BC 6.11 Integrating Using Integration by Parts Study Notes - New Syllabus

AP Calculus BC 6.11 Integrating Using Integration by Parts by Parts Study Notes- New syllabus

AP Calculus BC 6.11 Integrating Using Integration by Parts by Parts Study Notes – AP Calculus BC-  per latest AP Calculus BC Syllabus.

LEARNING OBJECTIVE

  • Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration.

Key Concepts: 

  • Integrating Using Integration by Parts

AP Calculus BC-Concise Summary Notes- All Topics

Integrating Using Integration by Parts

Integrating Using Integration by Parts

For two functions \( u(x) \) and \( v(x) \), the integration by parts formula is:

\(\displaystyle \int u \, dv = uv -\displaystyle \int v \, du \)

This is derived from the product rule for derivatives: \( \dfrac{d}{dx}(uv) = u \, \dfrac{dv}{dx} + v \, \dfrac{du}{dx} \).

Strategy to Choose \( u \) and \( dv \):

Use the ILATE rule as a general guide to pick \( u \):

PriorityFunction Type (Choose as \( u \))
1Inverse trig (e.g. \( \tan^{-1}x \))
2Logarithmic (e.g. \( \ln x \))
3Algebraic (e.g. \( x^2, x \))
4Trigonometric (e.g. \( \sin x, \cos x \))
5Exponential (e.g. \( e^x \))

Example:

Let \(\displaystyle \int x \ln x \, dx \) be evaluated using integration by parts. Which of the following is the correct indefinite integral?

(A) \( \dfrac{x^2}{2} \ln x – \dfrac{x^2}{4} + C \)
(B) \( x \ln x – x + C \)
(C) \( \dfrac{x^2}{2} \ln x – \dfrac{x}{2} + C \)
(D) \( x \ln x + \dfrac{x^2}{2} + C \)
(E) \( x \ln x – \dfrac{x^2}{2} + C \)

▶️Answer/Explanation

We apply integration by parts:

Let \( u = \ln x \), \( dv = x\,dx \). Then:

  • \( du = \dfrac{1}{x}\,dx \)
  • \( v = \dfrac{x^2}{2} \)

Using integration by parts: \(\displaystyle \int u\,dv = uv -\displaystyle \int v\,du \)

\(\displaystyle \int x \ln x\, dx = \dfrac{x^2}{2} \ln x -\displaystyle \int \dfrac{x^2}{2} \cdot \dfrac{1}{x} \, dx \)

\( = \dfrac{x^2}{2} \ln x -\displaystyle \int \dfrac{x}{2} \, dx = \dfrac{x^2}{2} \ln x – \dfrac{x^2}{4} + C \)

Correct answer: (A)

Example:

Evaluate \(\displaystyle \int x e^x \, dx \)

▶️Answer/Explanation

Use integration by parts. Choose:

  • \( u = x \) ⇒ \( du = dx \)
  • \( dv = e^x dx \) ⇒ \( v = e^x \)

Now apply:

\(\displaystyle \int x e^x dx = uv -\displaystyle \int v \, du = x e^x -\displaystyle \int e^x dx = x e^x – e^x + C \)

Final Answer: \( e^x(x – 1) + C \)

Example:

Evaluate \(\displaystyle \int \ln x \, dx \)

▶️Answer/Explanation

Let:

  • \( u = \ln x \) ⇒ \( du = \dfrac{1}{x} dx \)
  • \( dv = dx \) ⇒ \( v = x \)

\(\displaystyle \int \ln x \, dx = x \ln x -\displaystyle \int x \cdot \dfrac{1}{x} dx = x \ln x -\displaystyle \int 1 \, dx = x \ln x – x + C \)

Final Answer: \( x \ln x – x + C \)

Example:

Evaluate \(\displaystyle \int_0^1 x \ln(x+1) \, dx \)

▶️Answer/Explanation

Let:

  • \( u = \ln(x+1) \) ⇒ \( du = \dfrac{1}{x+1} dx \)
  • \( dv = x dx \) ⇒ \( v = \dfrac{1}{2}x^2 \)

Then:

\(\displaystyle \int_0^1 x \ln(x+1) dx = \left[\dfrac{1}{2} x^2 \ln(x+1) \right]_0^1 -\displaystyle \int_0^1 \dfrac{1}{2}x^2 \cdot \dfrac{1}{x+1} dx \)

Evaluate the boundary term:

\( \left[\dfrac{1}{2} x^2 \ln(x+1) \right]_0^1 = \dfrac{1}{2} (1)^2 \ln(2) – 0 = \dfrac{1}{2} \ln 2 \)

Now evaluate the remaining integral:

\(\displaystyle \int_0^1 \dfrac{x^2}{x+1} dx \) ← Use polynomial division (or long division):

\( \dfrac{x^2}{x+1} = x – 1 + \dfrac{1}{x+1} \)

So:

\(\displaystyle \int_0^1 \dfrac{x^2}{x+1} dx =\displaystyle \int_0^1 (x – 1 + \dfrac{1}{x+1}) dx = \left[ \dfrac{1}{2}x^2 – x + \ln(x+1) \right]_0^1 \)

= \( \left( \dfrac{1}{2} – 1 + \ln 2 \right) – (0 – 0 + \ln 1) = -\dfrac{1}{2} + \ln 2 \)

So the full answer becomes:

\( \dfrac{1}{2} \ln 2 – \dfrac{1}{2}(-\dfrac{1}{2} + \ln 2) = \dfrac{1}{2} \ln 2 + \dfrac{1}{4} – \dfrac{1}{2} \ln 2 = \dfrac{1}{4} \)

Final Answer: \( \dfrac{1}{4} \)

Example:

Evaluate the definite integral: \(\displaystyle \int_1^e \ln x \, dx \)

(A) \( 1 \)
(B) \( e – 1 \)
(C) \( e \ln e – e + 1 \)
(D) \( e – 1 – \ln e \)
(E) \( e – 1 \)

▶️Answer/Explanation

Use integration by parts:

Let \( u = \ln x \), so \( du = \dfrac{1}{x} dx \)
Let \( dv = dx \), so \( v = x \)

Using the formula: \(\displaystyle \int u\,dv = uv -\displaystyle \int v\,du \)

\(\displaystyle \int \ln x \, dx = x \ln x -\displaystyle \int x \cdot \dfrac{1}{x} dx = x \ln x -\displaystyle \int 1 \, dx = x \ln x – x \)

Now apply the limits from 1 to \( e \):

\(\displaystyle \int_1^e \ln x \, dx = \left[ x \ln x – x \right]_1^e \)

At \( x = e \): \( e \ln e – e = e – e = 0 \)

At \( x = 1 \): \( 1 \ln 1 – 1 = 0 – 1 = -1 \)

So, \(\displaystyle \int_1^e \ln x \, dx = 0 – (-1) = 1 \)

Correct answer: (A)

Scroll to Top