Home / AP calculus AB and BC concise summary notes / AP Calculus BC 6.12 Using Linear Partial Fractions Study Notes

AP Calculus BC 6.12 Using Linear Partial Fractions Study Notes - New Syllabus

AP Calculus BC 6.12 Using Linear Partial Fractions Study Notes- New syllabus

AP Calculus BC 6.12 Using Linear Partial Fractions Study Notes – AP Calculus BC-  per latest AP Calculus BC Syllabus.

LEARNING OBJECTIVE

  • Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration.

Key Concepts: 

  • Integrating Using Linear Partial Fractions

AP Calculus BC-Concise Summary Notes- All Topics

Integrating Using Linear Partial Fractions

Integrating Using Linear Partial Fractions

Partial fractions help us integrate rational functions by breaking them into simpler fractions that are easier to integrate.

General Form: If you have a rational function \( \dfrac{P(x)}{Q(x)} \), where the degree of the numerator is less than the degree of the denominator, and \( Q(x) \) factors into linear or irreducible quadratic factors, you can decompose it into a sum of simpler fractions.

 Types of Partial Fraction Decomposition

Type of DenominatorForm of Decomposition
\( (x – a)(x – b) \)
(Distinct linear factors)
\( \dfrac{A}{x – a} + \dfrac{B}{x – b} \)
\( (x – a)^n \)
(Repeated linear factor)
\( \dfrac{A_1}{x – a} + \dfrac{A_2}{(x – a)^2} + \dots + \dfrac{A_n}{(x – a)^n} \)
\( x^2 + px + q \)
(Irreducible quadratic factor)
\( \dfrac{Ax + B}{x^2 + px + q} \)
\( (x^2 + px + q)^n \)
(Repeated irreducible quadratic)
\( \dfrac{A_1x + B_1}{x^2 + px + q} + \dfrac{A_2x + B_2}{(x^2 + px + q)^2} + \dots + \dfrac{A_nx + B_n}{(x^2 + px + q)^n} \)

Example:

Find the integral: \(\displaystyle \int \dfrac{3x + 5}{(x + 1)(x + 2)} \, dx \)

▶️Answer/Explanation

Decompose: \( \dfrac{3x + 5}{(x + 1)(x + 2)} = \dfrac{A}{x + 1} + \dfrac{B}{x + 2} \)

Solving: \( 3x + 5 = A(x + 2) + B(x + 1) \Rightarrow A = 2, B = 1 \)

Integrate: \(\displaystyle \int \left( \dfrac{2}{x + 1} + \dfrac{1}{x + 2} \right) dx = 2\ln|x + 1| + \ln|x + 2| + C \)

Answer: \( \boxed{2\ln|x + 1| + \ln|x + 2| + C} \)

Example:

Evaluate: \(\displaystyle \int_1^2 \dfrac{5x + 4}{(x + 1)(x + 2)} \, dx \)

▶️Answer/Explanation

Decompose: \( \dfrac{5x + 4}{(x + 1)(x + 2)} = \dfrac{-1}{x + 1} + \dfrac{6}{x + 2} \)

Now integrate each: \( -\int_1^2 \dfrac{1}{x + 1} dx + 6\displaystyle \int_1^2 \dfrac{1}{x + 2} dx \)

Evaluate using logs: \( = -[\ln(x + 1)]_1^2 + 6[\ln(x + 2)]_1^2 \)

= \( \ln(2) – \ln(3) + 6(\ln(4) – \ln(3)) = \ln\left(\dfrac{2}{3}\right) + 6\ln\left(\dfrac{4}{3}\right) \)

Answer: \( \boxed{\ln\left( \dfrac{2}{3} \cdot \left( \dfrac{4}{3} \right)^6 \right)} \)

Example:

Find \(\displaystyle \int \dfrac{4x + 3}{(x – 1)^2} \, dx \)

▶️Answer/Explanation

Decompose: \( \dfrac{4x + 3}{(x – 1)^2} = \dfrac{A}{x – 1} + \dfrac{B}{(x – 1)^2} \)

Clear denominator: \( 4x + 3 = A(x – 1) + B \)

Let \( x = 1 \): \( 4(1) + 3 = A(0) + B \Rightarrow B = 7 \)

Now plug another value, say \( x = 0 \): \( 0 + 3 = A(-1) + 7 \Rightarrow A = 4 \)

Integrate: \(\displaystyle \int \left( \dfrac{4}{x – 1} + \dfrac{7}{(x – 1)^2} \right) dx = 4\ln|x – 1| – \dfrac{7}{x – 1} + C \)

Answer: \( \boxed{4\ln|x – 1| – \dfrac{7}{x – 1} + C} \)

Example:

Find \(\displaystyle \int \dfrac{3x + 2}{(x^2 + 1)(x – 1)} \, dx \)

▶️Answer/Explanation

We decompose: \( \dfrac{3x + 2}{(x^2 + 1)(x – 1)} = \dfrac{A}{x – 1} + \dfrac{Bx + C}{x^2 + 1} \)

Multiply both sides by \( (x – 1)(x^2 + 1) \): \( 3x + 2 = A(x^2 + 1) + (Bx + C)(x – 1) \)

Expand and group terms: \( 3x + 2 = A(x^2 + 1) + Bx(x – 1) + C(x – 1) \)

Now solve for A, B, C using values (or comparing coefficients). After solving: \( A = 1 \), \( B = 2 \), \( C = 2 \)

So the integrand becomes: \( \dfrac{1}{x – 1} + \dfrac{2x + 2}{x^2 + 1} \)

Now integrate: \(\displaystyle \int \dfrac{1}{x – 1} dx +\displaystyle \int \dfrac{2x}{x^2 + 1} dx +\displaystyle \int \dfrac{2}{x^2 + 1} dx \)

Results: \( \ln|x – 1| + \ln(x^2 + 1) + 2\arctan(x) + C \)

Answer: \( \boxed{\ln|x – 1| + \ln(x^2 + 1) + 2\arctan(x) + C} \)

Example:

Evaluate \(\displaystyle \int_0^1 \dfrac{x + 3}{x^2 + 4} \, dx \)

▶️Answer/Explanation

Break the fraction into parts: \( \dfrac{x + 3}{x^2 + 4} = \dfrac{x}{x^2 + 4} + \dfrac{3}{x^2 + 4} \)

Now integrate term-by-term: \(\displaystyle \int_0^1 \dfrac{x}{x^2 + 4} dx +\displaystyle \int_0^1 \dfrac{3}{x^2 + 4} dx \)

First term: Let \( u = x^2 + 4 \Rightarrow du = 2x dx \Rightarrow \dfrac{1}{2} du = x dx \) So,\displaystyle \int \dfrac{x}{x^2 + 4} dx = \dfrac{1}{2} \ln(x^2 + 4) \)

Second term: \(\displaystyle \int \dfrac{3}{x^2 + 4} dx = \dfrac{3}{2} \arctan\left(\dfrac{x}{2}\right) \)

Now apply limits \( x = 0 \) to \( x = 1 \):

\( = \left[ \dfrac{1}{2} \ln(x^2 + 4) + \dfrac{3}{2} \arctan\left(\dfrac{x}{2}\right) \right]_0^1\)

\( = \dfrac{1}{2} \ln(5) – \dfrac{1}{2} \ln(4) + \dfrac{3}{2} \left( \arctan\left(\dfrac{1}{2}\right) – \arctan(0) \right) \)

Answer: \( \boxed{\dfrac{1}{2} \ln\left(\dfrac{5}{4}\right) + \dfrac{3}{2} \arctan\left(\dfrac{1}{2}\right)} \)

Scroll to Top