Home / AP calculus AB and BC concise summary notes / AP Calculus BC 6.14 Selecting Techniques for Antidifferentiation Study Notes

AP Calculus BC 6.14 Selecting Techniques for Antidifferentiation Study Notes - New Syllabus

AP Calculus BC 6.14 Selecting Techniques for Antidifferentiation Study Notes- New syllabus

AP Calculus BC 6.14 Selecting Techniques for Antidifferentiation Study Notes – AP Calculus BC-  per latest AP Calculus BC Syllabus.

LEARNING OBJECTIVE

  • Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration.

Key Concepts: 

  •  Selecting Techniques for Antidifferentiation

AP Calculus BC-Concise Summary Notes- All Topics

 Selecting Techniques for Antidifferentiation

 Selecting Techniques for Antidifferentiation

When solving indefinite or definite integrals, there is no single method that works for all functions. Instead, we must choose an integration technique based on the form of the integrand. The table below outlines common forms and the most suitable techniques.

Form of IntegrandRecommended Technique
\( f(g(x)) \cdot g'(x) \)Substitution (u-substitution)
\( P_n(x) \) (polynomial)Direct integration using power rule
Product of two functions \( u(x) \cdot v(x) \)Integration by parts
Rational functions \( \dfrac{P_m(x)}{P_n(x)} \)Polynomial long division and/or partial fractions
Square roots of quadratic expressionsTrigonometric substitution or completing the square
Trigonometric functionsTrigonometric identities, u-substitution, or parts
Improper integralsRewrite using limits, then apply above techniques

Example :

Evaluate \( \displaystyle \int x \cos(x^2) \, dx \).

▶️Answer/Explanation

We notice the integrand has the form \( f(g(x)) \cdot g'(x) \), which suggests u-substitution.
Let \( u = x^2 \), then \( du = 2x \, dx \) or \( \dfrac{du}{2} = x \, dx \).

\(\displaystyle\int x \cos(x^2) \, dx = \dfrac{1}{2} \int \cos(u) \, du = \dfrac{1}{2} \sin(u) + C \).
Substitute back \( u = x^2 \):
\( \boxed{\dfrac{1}{2} \sin(x^2) + C} \).

Example :

Evaluate \( \displaystyle \int x^3 e^x \, dx \).

▶️Answer/Explanation

The integrand is a product of two functions \( x^3 \) and \( e^x \), suggesting integration by parts.
We choose \( u = x^3 \), \( dv = e^x dx \).
Then \( du = 3x^2 dx \) and \( v = e^x \).

Applying integration by parts:
\(\displaystyle \int x^3 e^x dx = x^3 e^x – \int 3x^2 e^x dx \).
We repeat the process until we reach \( \int e^x dx \).
Final answer:
\( e^x(x^3 – 3x^2 + 6x – 6) + C \).

Example:

Evaluate \( \displaystyle \int \sin^3 x \cos^2 x \, dx \).

▶️Answer/Explanation

We can use the identity \( \sin^2 x = 1 – \cos^2 x \).

Write \( \sin^3 x = \sin x (1 – \cos^2 x) \).

Substitute \( u = \cos x \), so \( du = -\sin x \, dx \).

The integral becomes:

\( – \displaystyle\int (1 – u^2) u^2 \, du = -\displaystyle\int (u^2 – u^4) \, du \)

\( = -\left( \dfrac{u^3}{3} – \dfrac{u^5}{5} \right) + C \)

Substitute back \( u = \cos x \):

\( -\dfrac{\cos^3 x}{3} + \dfrac{\cos^5 x}{5} + C \)

Example:

Evaluate \( \displaystyle \int \dfrac{dx}{x^2 + 6x + 13} \).

▶️Answer/Explanation

Complete the square: \( x^2 + 6x + 13 = (x+3)^2 + 4 \).

Let \( u = x+3 \), so \( du = dx \).

The integral becomes:

\( \displaystyle\int \dfrac{du}{u^2 + 2^2} = \dfrac{1}{2} \arctan\left( \dfrac{u}{2} \right) + C \)

Substitute back \( u = x+3 \):

\( \dfrac{1}{2} \arctan\left( \dfrac{x+3}{2} \right) + C \)

Example:

Evaluate \( \displaystyle \int \dfrac{3x+5}{x^2 – x – 6} \, dx \).

▶️Answer/Explanation

Factor the denominator: \( x^2 – x – 6 = (x-3)(x+2) \).

Write:

\( \dfrac{3x+5}{(x-3)(x+2)} = \dfrac{A}{x-3} + \dfrac{B}{x+2} \)

Multiply through by \((x-3)(x+2)\):

\( 3x + 5 = A(x+2) + B(x-3) \)

Set \( x = 3 \): \( 9 + 5 = 5A \) → \( A = \dfrac{14}{5} \).

Set \( x = -2 \): \( -6 + 5 = -5B \) → \( B = \dfrac{1}{5} \).

Integral becomes:

\( \dfrac{14}{5} \int \dfrac{dx}{x-3} + \dfrac{1}{5} \int \dfrac{dx}{x+2} \)

\( = \dfrac{14}{5} \ln|x-3| + \dfrac{1}{5} \ln|x+2| + C \)

Example:

Evaluate \( \displaystyle \int x e^{2x} \, dx \).

▶️Answer/Explanation

Use the formula \( \int u \, dv = uv – \int v \, du \).

Let \( u = x \) → \( du = dx \).

Let \( dv = e^{2x} dx \) → \( v = \dfrac{e^{2x}}{2} \).

Then:

\( \displaystyle\int x e^{2x} \, dx = \dfrac{x e^{2x}}{2} – \int \dfrac{e^{2x}}{2} \, dx \)

\( = \dfrac{x e^{2x}}{2} – \dfrac{e^{2x}}{4} + C \)

Scroll to Top