Home / AP calculus AB and BC concise summary notes / AP Calculus BC 6.7 The Fundamental Theorem of Calculus and Definite Integrals Study Notes

AP Calculus BC 6.7 The Fundamental Theorem of Calculus and Definite Integrals Study Notes - New Syllabus

AP Calculus BC 6.7 The Fundamental Theorem of Calculus and Definite Integrals Study Notes- New syllabus

AP Calculus BC 6.7 The Fundamental Theorem of Calculus and Definite Integrals Study Notes – AP Calculus BC-  per latest AP Calculus BC Syllabus.

LEARNING OBJECTIVE

  • Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration.

Key Concepts: 

  • The Fundamental Theorem of Calculus and Definite Integrals

AP Calculus BC-Concise Summary Notes- All Topics

The Fundamental Theorem of Calculus and Definite Integrals

The Fundamental Theorem of Calculus and Definite Integrals

The Fundamental Theorem of Calculus (FTC) bridges two central concepts in calculus: the definite integral and the antiderivative. It provides an efficient way to evaluate definite integrals without resorting to Riemann sums or area formulas.

The theorem consists of two key parts:

1. First Part: Derivative of the Accumulation Function

If a function \( f \) is continuous on a closed interval \([a, b]\), and if we define a new function by:

\( F(x) = \displaystyle \int_a^x f(t)\,dt \),

then the function \( F(x) \) is differentiable on \((a, b)\), and its derivative is simply:

\( F'(x) = f(x) \)

This tells us that taking the derivative of the accumulation of \( f \) from \( a \) to \( x \) gives us back the original function \( f(x) \).

2. Second Part: Evaluation of Definite Integrals Using Antiderivatives

If \( f \) is continuous on \([a, b]\), and \( F \) is any antiderivative of \( f \) (i.e., \( F'(x) = f(x) \)), then:

\( \displaystyle \int_a^b f(x)\,dx = F(b) – F(a) \)

This result allows us to evaluate the definite integral by simply finding an antiderivative of \( f(x) \) and applying the limits of integration.

Conclusion: The FTC shows that differentiation and integration are inverse processes. It turns the process of finding areas under curves (definite integrals) into a simpler algebraic calculation using antiderivatives.

Example :

Evaluate the definite integral \( \displaystyle \int_1^4 (3x^2 + 2x)\,dx \).

▶️Answer/Explanation

Step 1: Find the antiderivative of \( f(x) = 3x^2 + 2x \):

\( F(x) = x^3 + x^2 \)

Step 2: Apply the Fundamental Theorem:

\( \displaystyle \int_1^4 (3x^2 + 2x)\,dx = F(4) – F(1) \)

\( = (4^3 + 4^2) – (1^3 + 1^2) = (64 + 16) – (1 + 1) = 80 – 2 = 78 \)

Example:

Evaluate \( \displaystyle \int_0^{\dfrac{\pi}{2}} \cos(x)\,dx \).

▶️Answer/Explanation

Antiderivative of \( \cos(x) \) is \( \sin(x) \)

\( \displaystyle \int_0^{\dfrac{\pi}{2}} \cos(x)\,dx = \sin\left(\dfrac{\pi}{2}\right) – \sin(0) = 1 – 0 = 1 \)

Notes:

  • The FTC requires the function to be continuous over the interval.
  • Discontinuities may require geometric or limit-based interpretations.
  • When evaluating definite integrals, always apply upper limit minus lower limit: \( F(b) – F(a) \).

Example:

Let \( H(x) = \displaystyle \int_{1}^{x^2} \sin(t^3)\,dt \). Find \( H'(x) \).

▶️Answer/Explanation

This is a composition of functions, so we apply the chain rule along with the FTC:

\( H'(x) = \dfrac{d}{dx} \left[ \displaystyle \int_{1}^{x^2} \sin(t^3)\,dt \right] \)

Let the upper limit be \( u = x^2 \), then:

\( H'(x) = \sin((x^2)^3) \cdot \dfrac{d}{dx}(x^2) = \sin(x^6) \cdot 2x \)

So, \( H'(x) = 2x \sin(x^6) \)

Example:

Given \( h(x) = \begin{cases} x – 1 & \text{for } x < 0 \\ \sin x & \text{for } x \ge 0 \end{cases} \), evaluate \( \displaystyle \int_{-1}^{\pi} h(x)\,dx \).

(A) \( \dfrac{3}{2} \)    

(B) \( -\dfrac{1}{2} \)    

(C) \( -\dfrac{3}{2} \)    

(D) \( \dfrac{1}{2} \)    

(E) \( -\dfrac{7}{2} \)

▶️Answer/Explanation

We split the integral at 0 due to the piecewise definition:

\( \displaystyle \int_{-1}^{\pi} h(x)\,dx = \displaystyle \int_{-1}^{0} (x – 1)\,dx + \displaystyle \int_{0}^{\pi} \sin x\,dx \)

First part:

\( \displaystyle \int_{-1}^{0} (x – 1)\,dx = \left[\dfrac{1}{2}x^2 – x\right]_{-1}^{0} = \left(0 – 0\right) – \left(\dfrac{1}{2}(-1)^2 – (-1)\right) = -\left(\dfrac{1}{2} + 1\right) = -\dfrac{3}{2} \)

Second part:

\( \displaystyle \int_{0}^{\pi} \sin x\,dx = [-\cos x]_{0}^{\pi} = -\cos(\pi) + \cos(0) = -(-1) + 1 = 2 \)

Total integral:

\( \displaystyle \int_{-1}^{\pi} h(x)\,dx = -\dfrac{3}{2} + 2 = \dfrac{1}{2} \)

Example:

A cubic polynomial is defined as \( f(x) = \dfrac{2}{3}x^3 + ax^2 + bx + c \), where \( a, b, c \) are constants. It has:

  • A local minimum at \( x = -2 \)
  • A point of inflection at \( x = -5 \)
  • \( \displaystyle \int_0^1 f(x)\,dx = \dfrac{15}{2} \)

Find the value of \( c \).

▶️Answer/Explanation

Step 1: Use the critical point \( x = -2 \)
A local minimum implies \( f'(-2) = 0 \). Compute the derivative:

\( f(x) = \dfrac{2}{3}x^3 + ax^2 + bx + c \)

\( f'(x) = 2x^2 + 2ax + b \)

Set \( f'(-2) = 0 \):

\( 2(-2)^2 + 2a(-2) + b = 0 \Rightarrow 8 – 4a + b = 0 \quad \text{(1)} \)

Step 2: Use inflection point at \( x = -5 \)
Point of inflection means \( f”(-5) = 0 \). Compute second derivative:

\( f”(x) = 4x + 2a \)

Set \( f”(-5) = 0 \):

\( 4(-5) + 2a = 0 \Rightarrow -20 + 2a = 0 \Rightarrow a = 10 \quad \text{(2)} \)

Step 3: Substitute \( a = 10 \) into (1):

\( 8 – 4(10) + b = 0 \Rightarrow 8 – 40 + b = 0 \Rightarrow b = 32 \quad \text{(3)} \)

Step 4: Use definite integral condition:

\( \displaystyle \int_0^1 f(x)\,dx = \displaystyle \int_0^1 \left( \dfrac{2}{3}x^3 + 10x^2 + 32x + c \right) dx = \dfrac{15}{2} \)

Integrate term by term:

\( \displaystyle \int_0^1 f(x)\,dx = \left[ \dfrac{1}{6}x^4 + \dfrac{10}{3}x^3 + 16x^2 + cx \right]_0^1 \)

Evaluate at 1:

\( \dfrac{1}{6} + \dfrac{10}{3} + 16 + c = \dfrac{15}{2} \)

Convert everything to sixths:

\( \dfrac{1}{6} + \dfrac{20}{6} + \dfrac{96}{6} + c = \dfrac{15}{2} \Rightarrow \dfrac{117}{6} + c = \dfrac{15}{2} \)

Convert \( \dfrac{15}{2} = \dfrac{45}{6} \):

\( \dfrac{117}{6} + c = \dfrac{45}{6} \Rightarrow c = \dfrac{45 – 117}{6} = \dfrac{-72}{6} = -12 \)

Answer: \( c = -12 \)

Scroll to Top