Home / AP calculus AB and BC concise summary notes / AP Calculus BC 6.9 Integrating Using Substitution Study Notes

AP Calculus BC 6.9 Integrating Using Substitution Study Notes - New Syllabus

AP Calculus BC 6.9 Integrating Using Substitution Study Notes- New syllabus

AP Calculus BC 6.9 Integrating Using Substitution Study Notes – AP Calculus BC-  per latest AP Calculus BC Syllabus.

LEARNING OBJECTIVE

  • Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration.

Key Concepts: 

  • Integrating Using Substitution

AP Calculus BC-Concise Summary Notes- All Topics

Integrating Using Substitution

Integrating Using Substitution

U-Substitution is a method for evaluating integrals and is essentially the reverse of the chain rule for differentiation. It helps simplify integrals where a composite function is involved.

If an integrand looks like a composition of functions (e.g., something of the form \( f(g(x))g'(x) \)), we let \( u = g(x) \). Then, \( du = g'(x)dx \), and the integral becomes easier in terms of \( u \).

Steps for Substitution:

  1. Identify an inner function \( u = g(x) \) such that its derivative \( g'(x) \) also appears in the integrand.
  2. Compute \( du = g'(x)dx \).
  3. Rewrite the entire integral in terms of \( u \) and \( du \).
  4. Integrate with respect to \( u \).
  5. Substitute back \( u = g(x) \) in the final answer.

Example:

Evaluate \(\displaystyle \int 2x(x^2 + 1)^5 \, dx \)

▶️Answer/Explanation

Let \( u = x^2 + 1 \Rightarrow du = 2x\,dx \)

The integral becomes: \(\displaystyle \int u^5 \, du = \dfrac{u^6}{6} + C \)

Substitute back: \( \dfrac{(x^2 + 1)^6}{6} + C \)

Example:

Evaluate \(\displaystyle \int \cos(3x)\,dx \)

▶️Answer/Explanation

Let \( u = 3x \Rightarrow du = 3dx \Rightarrow dx = \dfrac{1}{3}du \)

Integral becomes: \(\displaystyle \int \cos(u) \cdot \dfrac{1}{3}du = \dfrac{1}{3}\sin(u) + C \)

Substitute back: \( \dfrac{1}{3}\sin(3x) + C \)

Example:

Evaluate \(\displaystyle \int \dfrac{x}{\sqrt{x^2 + 4}} \, dx \)

▶️Answer/Explanation

Let \( u = x^2 + 4 \Rightarrow du = 2x\,dx \Rightarrow \dfrac{1}{2}du = x\,dx \)

Integral becomes: \(\displaystyle \int \dfrac{1}{\sqrt{u}} \cdot \dfrac{1}{2} du = \dfrac{1}{2}\displaystyle \int u^{-1/2} du \)

= \( \dfrac{1}{2} \cdot \dfrac{u^{1/2}}{1/2} = \sqrt{u} \)

Substitute back: \( \sqrt{x^2 + 4} + C \)

Example:

Evaluate \(\displaystyle \int \dfrac{1}{x \ln x}\,dx \)

▶️Answer/Explanation

Let \( u = \ln x \Rightarrow du = \dfrac{1}{x}dx \)

Integral becomes: \(\displaystyle \int \dfrac{1}{u} du = \ln|u| + C \)

Substitute back: \( \ln|\ln x| + C \)

Substitution in Definite Integrals

When applying \( u \)-substitution to a definite integral \(\displaystyle \int_a^b f(x)\,dx \), you must change both:

  1. The integrand rewrite it in terms of \( u \).
  2. The limits of integration convert \( x = a \) and \( x = b \) to corresponding \( u \)-values.

If \( u = g(x) \), then:

\(\displaystyle \int_a^b f(x)\,dx =\displaystyle \int_{u(a)}^{u(b)} f(g^{-1}(u)) \cdot \dfrac{dx}{du} \, du \)

In practice, you simplify: \(\displaystyle \int_a^b f(x)\,dx =\displaystyle \int_{u(a)}^{u(b)} f(u)\, du \)

Example:

Evaluate the definite integral: \(\displaystyle \int_0^2 x(x^2 + 1)^3 \, dx \)

▶️Answer/Explanation

Let \( u = x^2 + 1 \) ⇒ \( du = 2x\,dx \Rightarrow \dfrac{1}{2}du = x\,dx \)

Change the limits:

  • When \( x = 0 \), \( u = 0^2 + 1 = 1 \)
  • When \( x = 2 \), \( u = 2^2 + 1 = 5 \)

Rewrite the integral:

\(\displaystyle \int_0^2 x(x^2 + 1)^3\,dx =\displaystyle \int_1^5 u^3 \cdot \dfrac{1}{2} du = \dfrac{1}{2}\displaystyle \int_1^5 u^3\,du \)

Integrate:

\( \dfrac{1}{2} \cdot \left[ \dfrac{u^4}{4} \right]_1^5 = \dfrac{1}{2} \cdot \left( \dfrac{5^4}{4} – \dfrac{1^4}{4} \right) = \dfrac{1}{2} \cdot \left( \dfrac{625 – 1}{4} \right) = \dfrac{1}{2} \cdot \dfrac{624}{4} = \dfrac{624}{8} = 78 \)

Final Answer: \( \boxed{78} \)

Example:

Evaluate the definite integral: \(\displaystyle \int_0^{\ln 2} \dfrac{e^x}{1 + e^x}\, dx \)

▶️Answer/Explanation

Let \( u = 1 + e^x \) Then \( du = e^x\, dx \)

Change the limits of integration:

  • When \( x = 0 \), \( u = 1 + e^0 = 2 \)
  • When \( x = \ln 2 \), \( u = 1 + e^{\ln 2} = 1 + 2 = 3 \)

Rewrite the integral using substitution:

\(\displaystyle \int_0^{\ln 2} \dfrac{e^x}{1 + e^x}\, dx =\displaystyle \int_2^3 \dfrac{1}{u}\, du \)

Integrate:

\(\displaystyle \int_2^3 \dfrac{1}{u}\, du = \ln|u| \Big|_2^3 = \ln(3) – \ln(2) = \ln\left( \dfrac{3}{2} \right) \)

Final Answer: \( \boxed{\ln\left( \dfrac{3}{2} \right)} \)

Scroll to Top