AP Calculus BC 8.8 Volumes with Cross Sections: Triangles and Semicircles Study Notes - New Syllabus
AP Calculus BC 8.8 Volumes with Cross Sections: Triangles and Semicircles Study Notes- New syllabus
AP Calculus BC 8.8 Volumes with Cross Sections: Triangles and Semicircles Study Notes – AP Calculus BC- per latest AP Calculus BC Syllabus.
LEARNING OBJECTIVE
- Definite integrals allow us to solve problems involving the accumulation of change over an interval.
Key Concepts:
- Volumes with Cross Sections: Triangles and Semicircles
Volumes with Cross Sections: Triangles and Semicircles
Volumes with Cross Sections : Triangles
When the base of a solid lies in the \( xy \)-plane and the cross sections perpendicular to the \( x \)-axis or \( y \)-axis are triangles, the volume can be calculated by integrating the area of each triangular cross section over the given interval.
![]()
The base of each triangular cross section corresponds to the distance between the bounding curves in the plane. The height is related to the base by a constant factor \( k \), which depends on the type of triangle:
- For an equilateral triangle: \( h = \dfrac{\sqrt{3}}{2} \cdot \text{base} \)
- For a right isosceles triangle: \( h = \text{base} \)
- For a general triangle: \( h = k \cdot \text{base} \)
Since the area of a triangle is \( \dfrac{1}{2} (\text{base}) (\text{height}) \), we can write:
\( A(x) = \dfrac{1}{2} \cdot \left[ \text{Base Length} \right] \cdot \left[ k \cdot \text{Base Length} \right] = \dfrac{k}{2} \left[ \text{Base Length} \right]^2 \)
If cross sections are perpendicular to the \( x \)-axis:
\( V = \displaystyle \int_{a}^{b} \dfrac{k}{2} \left[ f(x) – g(x) \right]^2 \, dx \)
If cross sections are perpendicular to the \( y \)-axis:
\( V = \displaystyle \int_{c}^{d} \dfrac{k}{2} \left[ f(y) – g(y) \right]^2 \, dy \)
Example:
The base of a solid is bounded by \( y = \sqrt{x} \) and \( y = 0 \) for \( 0 \leq x \leq 4 \). Each cross section perpendicular to the \( x \)-axis is an equilateral triangle. Find the volume of the solid.
▶️ Answer/Explanation
The base length of a cross section is:
\( \text{Base Length} = \sqrt{x} – 0 = \sqrt{x} \)
For an equilateral triangle, \( h = \dfrac{\sqrt{3}}{2} \cdot \text{base} \), so:
\( A(x) = \dfrac{1}{2} \cdot \text{base} \cdot h = \dfrac{1}{2} \cdot \sqrt{x} \cdot \dfrac{\sqrt{3}}{2} \cdot \sqrt{x} \)
\( A(x) = \dfrac{\sqrt{3}}{4} \cdot x \)
Integrating along \( 0 \leq x \leq 4 \):
\( V = \displaystyle \int_{0}^{4} \dfrac{\sqrt{3}}{4} x \, dx = \dfrac{\sqrt{3}}{4} \cdot \left[ \dfrac{x^2}{2} \right]_{0}^{4} \)
\( V = \dfrac{\sqrt{3}}{4} \cdot \dfrac{16}{2} = 2\sqrt{3} \)
Final Answer: \( V = 2\sqrt{3} \ \text{units}^3 \)
Example:
The base of a solid is bounded by \( y = x \) and \( y = 0 \) for \( 0 \leq x \leq 2 \). Cross sections perpendicular to the \( x \)-axis are right isosceles triangles whose legs lie in the base.
▶️ Answer/Explanation
Base length: \( x – 0 = x \)
For a right isosceles triangle, \( h = \text{base} \), so:
\( A(x) = \dfrac{1}{2} \cdot x \cdot x = \dfrac{x^2}{2} \)
\( V = \displaystyle \int_{0}^{2} \dfrac{x^2}{2} \, dx = \dfrac{1}{2} \cdot \left[ \dfrac{x^3}{3} \right]_{0}^{2} = \dfrac{1}{2} \cdot \dfrac{8}{3} = \dfrac{4}{3} \)
Final Answer: \( V = \dfrac{4}{3} \ \text{units}^3 \)
Example:
The base of a solid is bounded by \( y = 2 \) and \( y = x \) for \( 0 \leq x \leq 2 \). Each cross section perpendicular to the \( x \)-axis is a triangle whose height is twice its base length.
▶️ Answer/Explanation
Base length: \( 2 – x \)
Height: \( h = 2 \cdot \text{base} = 2(2 – x) \)
Area: \( A(x) = \dfrac{1}{2} \cdot (2 – x) \cdot [2(2 – x)] = (2 – x)^2 \)
Volume: \( V = \displaystyle \int_{0}^{2} (2 – x)^2 \, dx \)
Expand: \( (2 – x)^2 = 4 – 4x + x^2 \)
\( V = \left[ 4x – 2x^2 + \dfrac{x^3}{3} \right]_{0}^{2} = \left[ 8 – 8 + \dfrac{8}{3} \right] – 0 = \dfrac{8}{3} \)
Final Answer: \( V = \dfrac{8}{3} \ \text{units}^3 \)
Volumes with Cross Sections: Semi-circles
When the base of a solid lies in the \( xy \)-plane and cross sections perpendicular to the \( x \)-axis (or \( y \)-axis) are semi-circles, the volume can be determined by integrating the area of each semi-circular cross section along the given interval.
![]()
If the diameter of each semi-circle is the distance between the bounding curves \( f(x) \) and \( g(x) \), then:
Diameter: \( D = f(x) – g(x) \)
Radius: \( r = \dfrac{D}{2} \)
Area of semi-circle: \( A(x) = \dfrac{1}{2} \pi r^{2} = \dfrac{1}{2} \pi \left( \dfrac{f(x) – g(x)}{2} \right)^{2} \)
For perpendicular cross sections to the \( x \)-axis:
\( V = \displaystyle \int_{a}^{b} \dfrac{\pi}{8} \left[ f(x) – g(x) \right]^{2} \, dx \)
For perpendicular cross sections to the \( y \)-axis:
\( V = \displaystyle \int_{c}^{d} \dfrac{\pi}{8} \left[ f(y) – g(y) \right]^{2} \, dy \)
Example:
The base of a solid is bounded by \( y = \sqrt{x} \) and \( y = 0 \) for \( 0 \leq x \leq 4 \). Each cross section perpendicular to the \( x \)-axis is a semi-circle whose diameter is the distance between the curves. Find the volume of the solid.
▶️ Answer/Explanation
Here, the diameter is \( D = \sqrt{x} – 0 = \sqrt{x} \). Radius: \( r = \dfrac{\sqrt{x}}{2} \) Area of each cross section: \( A(x) = \dfrac{1}{2} \pi \left( \dfrac{\sqrt{x}}{2} \right)^{2} = \dfrac{\pi x}{8} \)
Volume: \( V = \displaystyle \int_{0}^{4} \dfrac{\pi x}{8} \, dx = \dfrac{\pi}{8} \left[ \dfrac{x^{2}}{2} \right]_{0}^{4} = \dfrac{\pi}{8} \cdot \dfrac{16}{2} = \dfrac{\pi}{8} \cdot 8 = \pi \)
Final Answer: \( V = \pi \)
Example:
The base of a solid is bounded by \( x = 4 – y^{2} \) and \( x = 0 \) for \( -2 \leq y \leq 2 \). Each cross section perpendicular to the \( y \)-axis is a semi-circle whose diameter is the distance between the curves. Find the volume of the solid.
▶️ Answer/Explanation
Here, the diameter is \( D = (4 – y^{2}) – 0 = 4 – y^{2} \). Radius: \( r = \dfrac{4 – y^{2}}{2} \) Area of each cross section: \( A(y) = \dfrac{1}{2} \pi \left( \dfrac{4 – y^{2}}{2} \right)^{2} = \dfrac{\pi}{8} \left( 4 – y^{2} \right)^{2} \)
Volume: \( V = \displaystyle \int_{-2}^{2} \dfrac{\pi}{8} \left( 4 – y^{2} \right)^{2} \, dy \)
Since the function is even, \( V = \dfrac{\pi}{8} \cdot 2 \displaystyle \int_{0}^{2} \left( 4 – y^{2} \right)^{2} \, dy \)
Expand: \( \left( 4 – y^{2} \right)^{2} = 16 – 8y^{2} + y^{4} \)
Integrate: \( \displaystyle \int_{0}^{2} (16 – 8y^{2} + y^{4}) \, dy = \left[ 16y – \dfrac{8y^{3}}{3} + \dfrac{y^{5}}{5} \right]_{0}^{2} \)
Substitute: \( (32 – \dfrac{64}{3} + \dfrac{32}{5}) \)
Common denominator 15: \( \dfrac{480 – 320 + 96}{15} = \dfrac{256}{15} \)
Multiply by \( \dfrac{\pi}{8} \cdot 2 = \dfrac{\pi}{4} \): \( V = \dfrac{\pi}{4} \cdot \dfrac{256}{15} = \dfrac{64\pi}{15} \)
Final Answer: \( V = \dfrac{64\pi}{15} \)
