Home / AP calculus AB and BC concise summary notes / AP Calculus BC 9.5 Integrating Vector- Valued Functions Study Notes

AP Calculus BC 9.5 Integrating Vector- Valued Functions Study Notes - New Syllabus

AP Calculus BC 9.5 Integrating Vector- Valued Functions Study Notes- New syllabus

AP Calculus BC 9.5 Integrating Vector- Valued Functions Study Notes – AP Calculus BC-  per latest AP Calculus BC Syllabus.

LEARNING OBJECTIVE

  • Solving an initial value problem allows us to determine an expression for the position of a particle moving in the plane.

Key Concepts: 

  •  Integrating Vector-Valued Functions

AP Calculus BC-Concise Summary Notes- All Topics

 Integrating Vector-Valued Functions

 Integrating Vector-Valued Functions

Integration of vector-valued functions extends the idea of integrating scalar functions to functions whose outputs are vectors.

A vector-valued function is usually written as:

$ \mathbf{r}(t) = \langle f(t), \, g(t), \, h(t) \rangle $

Its definite or indefinite integral is computed by integrating each component function separately.

Definition:

If \(\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle\) is continuous on an interval, then:

$ \int \mathbf{r}(t) \, dt = \left\langle \int f(t) \, dt , \; \int g(t) \, dt , \; \int h(t) \, dt \right\rangle + \mathbf{C} $

where \(\mathbf{C} = \langle C_1, C_2, C_3 \rangle\) is a constant vector.

Key Notes:

    • The process is component-wise integration.
    • Units of the result depend on the context (position from velocity, velocity from acceleration, etc.).
    • The constant of integration is itself a vector.
    • Definite integrals are computed similarly, with limits applied to each component:

$ \int_{a}^{b} \mathbf{r}(t) \, dt = \left\langle \int_{a}^{b} f(t) \, dt , \; \int_{a}^{b} g(t) \, dt , \; \int_{a}^{b} h(t) \, dt \right\rangle $

Example

Find \(\displaystyle \int \langle t, t^{2}, e^{t} \rangle \, dt\).

▶️ Answer/Explanation

Integrate each component separately:

$ \int t \, dt = \frac{t^{2}}{2}, \quad \int t^{2} \, dt = \frac{t^{3}}{3}, \quad \int e^{t} \, dt = e^{t} $

Thus:

$ \int \langle t, t^{2}, e^{t} \rangle \, dt = \left\langle \frac{t^{2}}{2}, \frac{t^{3}}{3}, e^{t} \right\rangle + \langle C_{1}, C_{2}, C_{3} \rangle $

Example

Evaluate \(\displaystyle \int_{0}^{1} \langle 2t, \; \sin(\pi t), \; 3 \rangle \, dt\).

▶️ Answer/Explanation

Integrate each component over \([0,1]\):

$ \int_{0}^{1} 2t \, dt = \left[ t^{2} \right]_{0}^{1} = 1 $

$ \int_{0}^{1} \sin(\pi t) \, dt = \left[ -\frac{\cos(\pi t)}{\pi} \right]_{0}^{1} = \frac{-\cos(\pi) + \cos(0)}{\pi} = \frac{-(-1) + 1}{\pi} = \frac{2}{\pi} $

$ \int_{0}^{1} 3 \, dt = \left[ 3t \right]_{0}^{1} = 3 $

So the result is:

$ \int_{0}^{1} \langle 2t, \; \sin(\pi t), \; 3 \rangle \, dt = \langle 1, \frac{2}{\pi}, 3 \rangle $

Example

A particle has velocity \(\mathbf{v}(t) = \langle e^{t}, \; \cos t, \; t \rangle\) m/s at \(t\) seconds. If its position at \(t=0\) is \(\mathbf{r}(0) = \langle 1, 0, -1 \rangle\) m, find \(\mathbf{r}(t)\).

▶️ Answer/Explanation

Integrate the velocity to get position:

$ \int e^{t} \, dt = e^{t} + C_{1}, \quad \int \cos t \, dt = \sin t + C_{2}, \quad \int t \, dt = \frac{t^{2}}{2} + C_{3} $

Thus:

$ \mathbf{r}(t) = \langle e^{t} + C_{1}, \; \sin t + C_{2}, \; \frac{t^{2}}{2} + C_{3} \rangle $

Using \(\mathbf{r}(0) = \langle 1, 0, -1 \rangle\):

  • From first component: \( e^{0} + C_{1} = 1 \implies 1 + C_{1} = 1 \implies C_{1} = 0 \)
  • From second component: \( \sin 0 + C_{2} = 0 \implies 0 + C_{2} = 0 \implies C_{2} = 0 \)
  • From third component: \( \frac{0^{2}}{2} + C_{3} = -1 \implies 0 + C_{3} = -1 \implies C_{3} = -1 \)

So:

$ \mathbf{r}(t) = \langle e^{t}, \; \sin t, \; \frac{t^{2}}{2} – 1 \rangle $

Scroll to Top