Home / AP Calculus AB:2.5 Applying the Power Rule – Exam Style questions with Answer- MCQ

AP Calculus AB:2.5 Applying the Power Rule – Exam Style questions with Answer- MCQ

Question

If \( f \) is the function given by \( f(x) = \frac{4}{x} + 5x – 1 \), then \( f'(2) = \)

A) 4
B) 6
C) 7
D) 11

▶️ Answer/Explanation

Solution

Correct Answer: A

Step 1: Find the derivative \( f'(x) \): \[ f(x) = \frac{4}{x} + 5x – 1 = 4x^{-1} + 5x – 1 \] \[ f'(x) = -4x^{-2} + 5 = -\frac{4}{x^2} + 5 \] Step 2: Evaluate at \( x = 2 \): \[ f'(2) = -\frac{4}{(2)^2} + 5 = -\frac{4}{4} + 5 = -1 + 5 = 4 \]

Question

If \( f(x) = \sqrt{x} \), then \( f'(5) = \)

A) 0
B) \( \frac{1}{5} \)
C) \( \frac{1}{2\sqrt{5}} \)
D) \( \sqrt{5} \)
E) \( \frac{25}{2} \)

▶️ Answer/Explanation

Solution

Correct Answer: C

Step 1: Rewrite the function: \[ f(x) = \sqrt{x} = x^{1/2} \] Step 2: Find the derivative: \[ f'(x) = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}} \] Step 3: Evaluate at \( x = 5 \): \[ f'(5) = \frac{1}{2\sqrt{5}} \]

Question

If \( f(x) = x^{\frac{3}{2}} \), then \( f'(4) \)

A) -6
B) -3
C) 3
D) 6
E) 8

▶️ Answer/Explanation

Solution

Correct Answer: C

Step 1: Find the derivative using the power rule: \[ f(x) = x^{\frac{3}{2}} \Rightarrow f'(x) = \frac{3}{2}x^{\frac{1}{2}} = \frac{3}{2}\sqrt{x} \] Step 2: Evaluate at \( x = 4 \): \[ f'(4) = \frac{3}{2}\sqrt{4} = \frac{3}{2} \times 2 = 3 \]

Question

If \( f(x) = \sqrt{x} + \frac{3}{\sqrt{x}} \), then \( f'(4) = \)

A) \( \frac{1}{10} \)
B) \( \frac{5}{16} \)
C) 1
D) \( \frac{7}{2} \)
E) \( \frac{49}{4} \)

▶️ Answer/Explanation

Solution

Correct Answer: A

Step 1: Rewrite the function using exponents: \[ f(x) = x^{1/2} + 3x^{-1/2} \] Step 2: Find the derivative using the power rule: \[ f'(x) = \frac{1}{2}x^{-1/2} – \frac{3}{2}x^{-3/2} \] \[ f'(x) = \frac{1}{2\sqrt{x}} – \frac{3}{2x^{3/2}} \] Step 3: Evaluate at \( x = 4 \): \[ f'(4) = \frac{1}{2\sqrt{4}} – \frac{3}{2(4)^{3/2}} = \frac{1}{4} – \frac{3}{16} = \frac{4}{16} – \frac{3}{16} = \frac{1}{16} \]

Scroll to Top