The table below gives values of the function \( f \) at selected values of \( x \). Which of the following statements must be true?
\( x \) | 1.9 | 1.99 | 1.999 | 1.9999 | 2 | 2.0001 | 2.001 | 2.01 | 2.1 |
\( f(x) \) | 7.80 | 7.86 | 7.90 | 7.95 | 3 | 8.05 | 8.10 | 8.14 | 8.20 |
A) \(\lim_{x \to 2} f(x)=3\)
B) \(\lim_{x \to 2} f(x)=8\)
C) \(\lim_{x \to 2} f(x)\) does not exist.
D) \(\lim_{x \to 2} f(x)\) cannot be definitively determined from the data in the table.
▶️ Answer/Explanation
The table below gives values of a function \( f \) at selected values of \( x \). Which of the following conclusions is supported by the data in the table?
\( x \) | 4.9 | 4.99 | 4.999 | 4.9999 | 5.0001 | 5.001 | 5.01 | 5.1 |
\( f(x) \) | 4 | -16 | -256 | -726 | 7.9999 | 7.999 | 7.99 | 7.9 |
A) \(\lim_{x \to 5} f(x)=8\)
B) \(\lim_{x \to 5^-} f(x)=8\)
C) \(\lim_{x \to 5^+} f(x)=8\)
D) \(\lim_{x \to 8^+} f(x)=5\)
▶️ Answer/Explanation
The table below gives selected values for a continuous function \( f \). Based on the data in the table, which of the following is the best approximation for \(\lim_{x \to 4} f(x)\)?
\( x \) | 3.9 | 3.99 | 3.999 | 4.001 | 4.01 | 4.1 |
\( f(x) \) | 7.018 | 7.007 | 7.002 | 6.998 | 5.982 | 5.887 |
A) 0
B) 4
C) 7
D) There is no best approximation, because the limit does not exist.
▶️ Answer/Explanation
Find the limit: \(\lim_{t\rightarrow -3}\frac{t+3}{t^{2}+9}\)
A) \(-\frac{1}{3}\)
B) 0
C) \(\frac{1}{3}\)
D) 1