Evaluate the limit:
\( \lim_{x \to -7} \frac{x + 7}{|x + 7|} \)
A) \( -1 \)
B) \( 0 \)
C) \( 1 \)
D) nonexistent
▶️ Answer/Explanation
Given the function \( f(x) = \frac{x}{|x|} \), where
\( |x| = \begin{cases} -x & \text{for } x < 0 \\ x & \text{for } x \geq 0 \end{cases} \)
evaluate \( \lim_{x \to 0} f(x) \). The limit is:
A) \( -1 \)
B) \( 0 \)
C) \( 1 \)
D) nonexistent
▶️ Answer/Explanation
Given the function \( f(x) = \frac{x-1}{1-\frac{1}{x}} \), evaluate \( \lim_{x \to 1} f(x) \). The limit is equivalent to which of the following?
A) \( \lim_{x \to 1} x \)
B) \( \lim_{x \to 1} (x-1) \)
C) \( \lim_{x \to 1} \frac{x-1}{x} \)
D) \( \lim_{x \to 1} \frac{(x-1)^2}{x} \)
▶️ Answer/Explanation
Let \( f \) and \( g \) be functions such that \( \lim_{x \to 4} \frac{f(x)}{g(x)} = \pi \) and \( \lim_{x \to 4} g(x) = 7 \). What is \( \lim_{x \to 4} f(x) \)?
A) \( \frac{\pi}{7} \)
B) \( 7 + \pi \)
C) \( 7\pi \)
D) The limit cannot be determined from the information given
▶️ Answer/Explanation