AP Calculus BC: 10.13 Radius and Interval of Convergence of  Power Series – Exam Style questions with Answer- FRQ

Question

The function g has derivatives of all orders for all real numbers. The Maclaurin series for g is given by \(g(x)=\sum_{n = 0}^{\infty }\frac{(-1)^{n}x^{n}}{2e^{n}+3}\) on its interval of convergence.
(a) State the conditions necessary to use the integral test to determine convergence of the series \(\sum_{n = 0}^{\infty }\frac{1}{e^{n}}\) Use the integral test to show that \(\sum_{n = 0}^{\infty }\frac{1}{e^{n}}\) converges.
(b) Use the limit comparison test with the series \(\sum_{n = 0}^{\infty }\frac{1}{e^{n}}\) to show that the series \(g(1)=\sum_{n = 0}^{\infty }\frac{(-1)^{n}}{2e^{n}+3}\) converges absolutely.
(c) Determine the radius of convergence of the Maclaurin series for g.
(d) The first two terms of the series \(g(1)=\sum_{n = 0}^{\infty }\frac{(-1)^{n}}{2e^{n}+3}\) are used to approximate g(1) . Use the alternating series error bound to determine an upper bound on the error of the approximation.

Answer/Explanation

Ans:

(a)

The function \(\frac{1}{e^{n}}\) is continuous, positive, and decreasing for n ≥ 0

\(\sum_{n = 0}^{\infty }\frac{1}{e^{n}}\) converges by integral test

\(\lim_{b\rightarrow \infty }\int_{0}^{b}\frac{1}{e^{n}}dn=\lim_{b\rightarrow \infty }\int_{0}^{b}e^{-n}dn\)

\(=\lim_{b\rightarrow \infty }\left [ -e^{-n} \right ]_{0}^{b}=\lim_{b\rightarrow \infty }\left [ -e^{-b} -(-e^{0})\right ]_{0}^{b}\)

= 0 + 1 = 1

(b)

\(g(1)=\sum_{n = 0}^{\infty }\frac{(-1)^{n}}{2e^{n}+3}\)           compare to     \(\sum_{n = 0}^{\infty }\frac{1}{e^{n}}\)    geometric   \(r = \frac{1}{e}<1\) converges

  absolute value of g(1)

\(\lim_{n\rightarrow \infty }\frac{\frac{1}{2e^{n}+3}}{\frac{1}{e^{n}}}=\lim_{n\rightarrow \infty }\frac{e^{n}}{2e^{n}+3}=\frac{1}{2}>0\)

\(\frac{1}{2e^{n}+3} > 0\)                                                                                  g(1) converges absolutely

\(\frac{1}{e^{n}} > 0\)                                                                                         by the limit comparison test


(c)

\(g(x)=\lim_{n\rightarrow \infty }\left | \frac{x^{n+1}}{2e^{n+1}+3} \cdot\frac{2e^{n}+3}{x^{n}} \right |=\left | \frac{x}{e} \right |\)

\(\left | \frac{x}{e} \right |<1\)

|x| < e

R = e

radius of convergence for g

(d)

approximation using first two terms

Error ≤ |third term of the series g(1)|

\(Error \leq \left | \frac{1}{2e^{2}+3} \right |\)

\(Error \leq \frac{1}{2e^{2}+3}\)

Question

The Taylor series for a function f about x = 1 is given by \(\sum_{n=1}^{\infty }(-1)^{n+1}\frac{2^{n}}{n}(x-1)^{n}\) and converges to f (x) for
|x – 1| <  R, where R is the radius of convergence of the Taylor series.
(a) Find the value of R.
(b) Find the first three nonzero terms and the general term of the Taylor series for f ‘, the derivative of f, about x = 1.
(c) The Taylor series for f ‘ about x = 1, found in part (b), is a geometric series. Find the function f ‘ to which the series converges for |x – 1| <  R. Use this function to determine f for |x – 1| <  R.

Answer/Explanation

Ans:

(a) Let an be the nth term of the Taylor series.

\(\frac{a_{n+1}}{a_{n}}=\frac{(-1)^{n+2}2^{n+1}(x-1)^{n+1}}{n+1}\cdot \frac{n}{(-)^{n+1}2^{n}(x-1)^{n}}\)

\(=\frac{-2n(x-1)}{n+1}\)

\(\lim_{n\rightarrow \infty }\left | \frac{-2n(x-1)}{n+1} \right |=2|x-1|\)

\(2|x-1|<1\Rightarrow |x-1|<\frac{1}{2}\)

The radius of convergence is \(R = \frac{1}{2}.\)

(b) The first three nonzero terms are
2 – 4(x – 1) + 8(x- 1)2.
The general term is \((-1)^{n+1}2^{n}(x-1)^{n-1} for n\geq 1.\)

(c) The common ratio is − 2 (x-1).

\(f'(x)=\frac{2}{1-(-2(x-1))}=\frac{2}{2x-1}for |x-1|<\frac{1}{2}\)

\(f(x)=\int \frac{2}{2x-1}dx=In |2x-1| + C\)

f(1) = 0

In |1| + C = 0 ⇒ C = 0

\(f(x)=|2x-1| for |x-1|<\frac{1}{2}\)

Scroll to Top