Home / AP Calculus BC 10.15 Representing Functions as Power Series – MCQs

AP Calculus BC 10.15 Representing Functions as Power Series - MCQs - Exam Style Questions

No-Calc Question

Let \(f\) be a function with \(f(0)=0\) and derivative \(f'(x)=\cos(x^{2})\). Which of the following is the Maclaurin series for \(f\)?
(A) \(\displaystyle \sum_{n=0}^{\infty}\frac{(-1)^{n}x^{2n}}{(2n)!}\)
(B) \(\displaystyle \sum_{n=0}^{\infty}\frac{(-1)^{n}x^{4n}}{(2n)!}\)
(C) \(\displaystyle \sum_{n=0}^{\infty}\frac{(-1)^{n}x^{4n+1}}{(4n+1)(2n)!}\)
(D) \(\displaystyle \sum_{n=0}^{\infty}\frac{(-1)^{n}(4n)\,x^{4n-1}}{(2n)!}\)
▶️ Answer/Explanation
Detailed solution

\(\cos u=\displaystyle\sum_{n=0}^{\infty}\frac{(-1)^{n}u^{2n}}{(2n)!}\). With \(u=x^{2}\): \(\cos(x^{2})=\sum_{n=0}^{\infty}\frac{(-1)^{n}x^{4n}}{(2n)!}\).

Since \(f'(x)=\cos(x^{2})\) and \(f(0)=0\), \(f(x)=\displaystyle\int_{0}^{x}\cos(t^{2})\,dt=\int_{0}^{x}\sum_{n=0}^{\infty}\frac{(-1)^{n}t^{4n}}{(2n)!}\,dt\).

Integrate term-by-term: \(\displaystyle f(x)=\sum_{n=0}^{\infty}\frac{(-1)^{n}}{(2n)!}\cdot\frac{x^{4n+1}}{4n+1}=\sum_{n=0}^{\infty}\frac{(-1)^{n}x^{4n+1}}{(4n+1)(2n)!}\).

Answer: (C)

No-Calc Question

Consider the series \(\displaystyle \sum_{n=0}^{\infty}\frac{(-1)^{n}}{2n+1}=1-\frac{1}{3}+\frac{1}{5}-\cdots\). Which of the following statements is true?
(A) The series converges, and \(\displaystyle \frac{1}{3}<\sum_{n=0}^{\infty}\frac{(-1)^{n}}{2n+1}<\frac{2}{3}\).
(B) The series converges, and \(\displaystyle \frac{2}{3}<\sum_{n=0}^{\infty}\frac{(-1)^{n}}{2n+1}<1\).
(C) The series converges, and \(\displaystyle 1<\sum_{n=0}^{\infty}\frac{(-1)^{n}}{2n+1}\).
(D) The series diverges.
▶️ Answer/Explanation
Detailed solution

\(\displaystyle \sum_{n=0}^{\infty}\frac{(-1)^{n}}{2n+1}=\arctan(1)=\frac{\pi}{4}\).
Since \(\displaystyle \frac{\pi}{4}\approx 0.7854\), we have \(\displaystyle \frac{2}{3}<\frac{\pi}{4}<1\).
Therefore the series converges and lies in the stated interval.
Answer: (B)

Scroll to Top