Home / AP Calculus BC : 10.2 Working with  Geometric Series- Exam Style questions with Answer- MCQ

AP Calculus BC : 10.2 Working with  Geometric Series- Exam Style questions with Answer- MCQ

Question

What is the sum of the series \(\frac{\pi }{e}-\frac{\pi }{e^{2}}+\frac{\pi }{e^{3}}-\frac{\pi }{e^{4}}+…..+(-1)^{n+1}\frac{\pi }{e^{n}}+….?\)
A \(\frac{\pi }{e+\pi }\)
B \(\frac{\pi }{e+1}\)
C \(\frac{\pi }{e-1 }\)
D The series diverges.

Answer/Explanation

 

Question

The sum of the infinite geometric series \(\frac{3}{2}+\frac{9}{16}+\frac{27}{128}+\frac{81}{1,024}+\) …..is 

(A) 1.60                              (B) 2.35                          (C) 2.40                                     (D) 2.45                                     (E) 2.50

Answer/Explanation

Ans:C

 

Question 

 \(\sum_{i=n}^{\infty }\left ( \frac{1}{3} \right )^{i}\)=
(A)\(\frac{3}{2}-\left ( \frac{1}{3} \right )^{n}\)                                     (B)\(\frac{3}{2}\left [ 1-\left ( \frac{1}{3} \right )^{n} \right ] \)                            (C)\(\frac{3}{2}\left ( \frac{1}{3} \right )^{n}\)                    (D)\(\frac{2}{3}\left ( \frac{1}{3} \right )^{n}\)                                 (E)\(\frac{2}{3}\left ( \frac{1}{3} \right )^{n+1}\)

Answer/Explanation

Ans:C

Question

Find the sum of the infinite series \(4+\frac{4}{3}+\frac{4}{9}+\frac{4}{27}\)
(A) \(\frac{85}{3}\)
(B) 24
(C) \(\frac{20}{3}\)
(D) 6

Answer/Explanation

Ans:(D)

This is a geometric series, as each term differs from the previous term by a factor of \(\frac{1}{3}\).Observe that if you let \(a_{n}=\frac{4}{3^{n-1}}\),then \(a_{1}=4,a_{2}=\frac{4}{3},a_{3}=\frac{4}{9}\) and so on. Thus, the series may be written

Scroll to Top