Home / AP Calculus BC 10.6 Comparison Tests for Convergence – FRQs

AP Calculus BC 10.6 Comparison Tests for Convergence - FRQs - Exam Style Questions

No-Calc Question

The function \(g\) has derivatives of all orders for all real numbers. The Maclaurin series for \(g\) is \[ g(x)=\sum_{n=0}^{\infty}\frac{(-1)^n x^{n}}{2e^{\,n}+3}, \] on its interval of convergence.
(a) State the conditions necessary to use the integral test to determine convergence of the series \(\displaystyle \sum_{n=0}^{\infty}\frac{1}{e^{\,n}}\). Use the integral test to show that \(\displaystyle \sum_{n=0}^{\infty}\frac{1}{e^{\,n}}\) converges.
(b) Use the limit comparison test with the series \(\displaystyle \sum_{n=0}^{\infty}\frac{1}{e^{\,n}}\) to show that the series \[ g(1)=\sum_{n=0}^{\infty}\frac{(-1)^n}{2e^{\,n}+3} \] converges absolutely.
(c) Determine the radius of convergence of the Maclaurin series for \(g\).
(d) The first two terms of the series \(\displaystyle g(1)=\sum_{n=0}^{\infty}\frac{(-1)^n}{2e^{\,n}+3}\) are used to approximate \(g(1)\). Use the alternating series error bound to determine an upper bound on the error of the approximation.

Most-appropriate topic codes (CED):

TOPIC 10.4: Integral Test for Convergence — part (a) :contentReference[oaicite:0]{index=0}
TOPIC 10.6: Comparison & Limit Comparison Tests — part (b) :contentReference[oaicite:1]{index=1}
TOPIC 10.13: Radius & Interval of Convergence of Power Series — part (c) :contentReference[oaicite:2]{index=2}
TOPIC 10.10: Alternating Series Error Bound — part (d) :contentReference[oaicite:3]{index=3}

▶️ Answer/Explanation

(a) Integral test
Conditions: for \(x\ge 0\), choose \(f(x)\) positive, continuous, and decreasing.
Take \(f(x)=e^{-x}\).
\(\displaystyle \int_{0}^{\infty} e^{-x}\,dx=\lim_{b\to\infty}\int_{0}^{b} e^{-x}\,dx=\lim_{b\to\infty}\big[-e^{-x}\big]_{0}^{b}=1.\)
Since the improper integral converges, \(\displaystyle \sum_{n=0}^{\infty}\frac{1}{e^{\,n}}\) converges by the integral test.

(b) Limit comparison for absolute convergence
Let \(a_n=\dfrac{1}{e^{\,n}}\) and \(b_n=\left|\dfrac{(-1)^n}{2e^{\,n}+3}\right|=\dfrac{1}{2e^{\,n}+3}\).
\(\displaystyle \lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{1/e^{\,n}}{1/(2e^{\,n}+3)}=\lim_{n\to\infty}\!\left(2+\frac{3}{e^{\,n}}\right)=2>0.\)
Because \(\sum a_n\) converges and the limit is positive and finite, \(\sum b_n\) converges by the limit comparison test.
Hence \(\displaystyle g(1)=\sum_{n=0}^{\infty}\frac{(-1)^n}{2e^{\,n}+3}\) converges absolutely.

(c) Radius of convergence
For \(c_n=\dfrac{(-1)^n}{2e^{\,n}+3}\), apply the ratio test:
\(\displaystyle \lim_{n\to\infty}\left|\frac{c_{n+1}}{c_n}\right| =\lim_{n\to\infty}\frac{2e^{\,n}+3}{2e^{\,n+1}+3} =\frac{1}{e}.\)
Convergence requires \(\dfrac{1}{e}|x|<1\Rightarrow |x|<e\). Therefore the radius of convergence is \(\boxed{R=e}\).

(d) Alternating series error bound
At \(x=1\), the series has terms \(a_n=\dfrac{(-1)^n}{2e^{\,n}+3}\) with \(|a_{n+1}|<|a_n|\) and \(a_n\to 0\).
Using the first two terms (\(n=0,1\)), the remainder satisfies \(\displaystyle \text{Error}\le |a_2|=\frac{1}{2e^{\,2}+3}\).
Thus an upper bound on the error is \(\boxed{\dfrac{1}{2e^{\,2}+3}}\).

Scroll to Top