Given that \( 3x – \tan y = 4 \), what is \( \frac{dy}{dx} \) in terms of \( y \)?
A) \( \frac{dy}{dx} = 3 \sin^2 y \)
B) \( \frac{dy}{dx} = 3 \cos^2 y \)
C) \( \frac{dy}{dx} = 3 \cos y \cot y \)
D) \( \frac{dy}{dx} = \frac{3}{1 + 9y^2} \)
▶️ Answer/Explanation
\( \frac{d}{dx}(\cot x) = \)
A) \( -\tan x \)
B) \( \sec^2 x \)
C) \( \tan x \)
D) \( -\csc^2 x \)
▶️ Answer/Explanation
\( \frac{d}{dx}(\sin x \csc x) = \)
A) 0
B) 1
C) \( -\cot^2 x \)
D) \( 2 \cot x \)
▶️ Answer/Explanation
Below is an attempt to derive the derivative of \( \csc x \) using the product rule, where \( x \) is in the domain of \( \csc x \). In which step, if any, does an error first appear?
Step 1: \( \csc x \cdot \sin x = 1 \)
Step 2: \( \frac{d}{dx}(\csc x \cdot \sin x) = 0 \)
Step 3: \( \frac{d}{dx}(\csc x) \cdot \sin x + \csc x \cdot \cos x = 0 \)
Step 4: \( \frac{d}{dx}(\csc x) = \frac{-\csc x \cdot \cos x}{\sin x} = -\csc x \cdot \cot x \)
A) Step 1
B) Step 2
C) Step 3
D) There is no error.