If \( g(x) = 3\sin x + 2\cos x + 5 \), then \( g’\left(\frac{\pi}{3}\right) = \)
A) \( \frac{3}{2} – \sqrt{3} \)
B) \( -\frac{3}{2} + \sqrt{3} \)
C) \( \frac{3}{2} + \sqrt{3} \)
D) \( 6 + \frac{3}{2} \sqrt{3} \)
▶️ Answer/Explanation
Let \( g \) be the function given by \( \lim_{h \to 0} \frac{\cos(x + h) – \cos x}{h} \). What is the instantaneous rate of change of \( g \) with respect to \( x \) at \( x = \frac{\pi}{6} \)?
A) \( \frac{\sqrt{3}}{2} \)
B) \( \frac{1}{2} \)
C) \( -\frac{1}{2} \)
D) \( -\frac{3}{\sqrt{2}} \)
▶️ Answer/Explanation
\( \lim_{h \to 0} \frac{7e^x – 7e^{x+h}}{4h} = \)
A) \( -7e^x \)
B) \( 7e^x \)
C) \( -\frac{7}{4}e^x \)
D) \( \frac{7}{4}e^x \)
▶️ Answer/Explanation
If \( f(x) = e^{1/x} \), then \( f'(x) = \)
A) \( -\frac{e^{1/x}}{x^2} \)
B) \( -e^{1/x} \)
C) \( \frac{e^{1/x}}{x} \)
D) \( \frac{e^{1/x}}{x^2} \)
E) \( \frac{1}{x} e^{(1/x)-1} \)