Home / AP Calculus BC : 2.7 Derivatives of cos x, sin x, ex, and ln x- Exam Style questions with Answer- MCQ

AP Calculus BC : 2.7 Derivatives of cos x, sin x, ex, and ln x- Exam Style questions with Answer- MCQ

Question

If \( g(x) = 3\sin x + 2\cos x + 5 \), then \( g’\left(\frac{\pi}{3}\right) = \)

A) \( \frac{3}{2} – \sqrt{3} \)

B) \( -\frac{3}{2} + \sqrt{3} \)

C) \( \frac{3}{2} + \sqrt{3} \)

D) \( 6 + \frac{3}{2} \sqrt{3} \)

▶️ Answer/Explanation
Solution
For \( g(x) = 3\sin x + 2\cos x + 5 \), the derivative is \( g'(x) = 3\cos x – 2\sin x \).
Evaluate at \( x = \frac{\pi}{3} \): \( g’\left(\frac{\pi}{3}\right) = 3\cos\left(\frac{\pi}{3}\right) – 2\sin\left(\frac{\pi}{3}\right) = 3 \cdot \frac{1}{2} – 2 \cdot \frac{\sqrt{3}}{2} = \frac{3}{2} – \sqrt{3} \).
✅ Answer: A)
Question

Let \( g \) be the function given by \( \lim_{h \to 0} \frac{\cos(x + h) – \cos x}{h} \). What is the instantaneous rate of change of \( g \) with respect to \( x \) at \( x = \frac{\pi}{6} \)?

A) \( \frac{\sqrt{3}}{2} \)

B) \( \frac{1}{2} \)

C) \( -\frac{1}{2} \)

D) \( -\frac{3}{\sqrt{2}} \)

▶️ Answer/Explanation
Solution
The expression \( \lim_{h \to 0} \frac{\cos(x + h) – \cos x}{h} \) is the derivative of \( g(x) = \cos x \), so \( g'(x) = -\sin x \).
Evaluate at \( x = \frac{\pi}{6} \): \( g’\left(\frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right) = -\frac{1}{2} \).
✅ Answer: C)
Question

\( \lim_{h \to 0} \frac{7e^x – 7e^{x+h}}{4h} = \)

A) \( -7e^x \)

B) \( 7e^x \)

C) \( -\frac{7}{4}e^x \)

D) \( \frac{7}{4}e^x \)

▶️ Answer/Explanation
Solution
The limit \( \lim_{h \to 0} \frac{7e^x – 7e^{x+h}}{4h} \) simplifies to \( \frac{7e^x – 7e^x e^h}{4h} = \frac{7e^x (1 – e^h)}{4h} \).
As \( h \to 0 \), this is the derivative of \( f(x) = -7e^x \) divided by 4: \( f'(x) = -7e^x \), so \( \frac{f'(x)}{4} = \frac{-7e^x}{4} \).
✅ Answer: C)
Question

If \( f(x) = e^{1/x} \), then \( f'(x) = \)

A) \( -\frac{e^{1/x}}{x^2} \)

B) \( -e^{1/x} \)

C) \( \frac{e^{1/x}}{x} \)

D) \( \frac{e^{1/x}}{x^2} \)

E) \( \frac{1}{x} e^{(1/x)-1} \)

▶️ Answer/Explanation
Solution
For \( f(x) = e^{1/x} \), use the chain rule. Let \( u = \frac{1}{x} \), so \( f(x) = e^u \), and \( \frac{du}{dx} = -\frac{1}{x^2} \).
Then, \( f'(x) = e^u \cdot \frac{du}{dx} = e^{1/x} \cdot \left(-\frac{1}{x^2}\right) = -\frac{e^{1/x}}{x^2} \).
✅ Answer: A)
Scroll to Top