If \( f(x) = \frac{3x^2 – 1}{4x + 1} \), then \( f'(-1) = \)
A) \( -\frac{14}{3} \)
B) \( -\frac{3}{2} \)
C) \( \frac{10}{9} \)
D) \( \frac{22}{9} \)
▶️ Answer/Explanation
The graphs of the functions f and g are shown above. If \( h(x)=\frac{f(x)+1}{g(x)+3x} \), then \( h'(2)= \)
A) \(\frac{1}{2}\)
B) \(\frac{9}{100}\)
C) \(\frac{1}{100}\)
D) \(\frac{1}{10}\)
▶️Answer/Explanation
Answer: C
Explanation:
1. Apply Quotient Rule:
\(h'(x) = \frac{(g(x)+3x)f'(x)-(f(x)+1)(g'(x)+3)}{(g(x)+3x)^2} \)
2. Evaluate at x=2:
From the graphs:
- \( f(2) = 3 \)
- \( f'(2) = \frac{1}{2} \)
- \( g(2) = 4 \)
- \( g'(2) = -2 \)
3. Substitute values:
\( h'(2) = \frac{(4+6)\left(\frac{1}{2}\right)-(3+1)(-2+3)}{(4+6)^2} \)
\(= \frac{10 \times 0.5 – 4 \times 1}{100} \)
\( = \frac{5 – 4}{100} = \frac{1}{100} \)
What is the slope of the line tangent to the graph of \( y = \frac{4x^3}{x + 3} \) at \( x = 1 \)?
A) 1
B) \( \frac{11}{4} \)
C) \( \frac{13}{4} \)
D) 12
▶️ Answer/Explanation
If \( f(x) = \frac{x – 1}{x + 1} \) for all \( x \neq -1 \), then \( f'(1) = \)
(A) –1
(B) \( -\frac{1}{2} \)
(C) 0
(D) \( \frac{1}{2} \)
(E) 1