Given that \( 3x – \tan y = 4 \), what is \( \frac{dy}{dx} \) in terms of \( y \)?
A) \( \frac{dy}{dx} = 3 \sin^2 y \)
B) \( \frac{dy}{dx} = 3 \cos^2 y \)
C) \( \frac{dy}{dx} = 3 \cos y \cot y \)
D) \( \frac{dy}{dx} = \frac{3}{1 + 9y^2} \)
▶️ Answer/Explanation
What is the slope of the line tangent to the curve \( 4y^2 + xy – 2x^2 = 3 \) at the point \( (-1, -1) \)?
A) \( -5 \)
B) \( -\frac{3}{7} \)
C) \( \frac{1}{4} \)
D) \( \frac{1}{3} \)
▶️ Answer/Explanation
If \( \cos(4x – y) = x + y \), then \( \frac{dy}{dx} = \)
A) \( -1 – \sin(4x – y) \)
B) \( \frac{2 + 4 \sin(4x – y)}{\sin(4x – y)} \)
C) \( \frac{-1}{1 + \sin(4x – y)} \)
D) \( \frac{1 + 4 \sin(4x – y)}{-1 + \sin(4x – y)} \)
▶️ Answer/Explanation
\( f(1) = 4 \) | \( f'(1) = -2 \) | \( g(3) = 7 \) | \( g'(3) = 1 \) |
The point (1,3) lies on the curve in the xy-plane given by the equation \( f(x)g(y) = 24 + x + y \), where f is a differentiable function of x and g is a differentiable function of y. What is the value of \( \frac{dy}{dx} \) at the point (1,3)?
A) −11
B) 4
C) 5
D) 13▶️Answer/Explanation
Answer: C
Solution:
1. Differentiate implicitly:
\[ \frac{d}{dx}[f(x)g(y)] = \frac{d}{dx}[24 + x + y] \]
\[ f'(x)g(y) + f(x)g'(y)\frac{dy}{dx} = 1 + \frac{dy}{dx} \]
2. Solve for dy/dx:
\[ f'(x)g(y) + f(x)g'(y)\frac{dy}{dx} – \frac{dy}{dx} = 1 \]
\[ \frac{dy}{dx}(f(x)g'(y) – 1) = 1 – f'(x)g(y) \]
\[ \frac{dy}{dx} = \frac{1 – f'(x)g(y)}{f(x)g'(y) – 1} \]
3. Substitute values at (1,3):
From the table:
- \( f(1) = 4 \)
- \( f'(1) = -2 \)
- \( g(3) = 7 \)
- \( g'(3) = 1 \)
4. Calculate:
\[ \frac{dy}{dx} = \frac{1 – (-2)(7)}{4(1) – 1} = \frac{1 + 14}{4 – 1} = \frac{15}{3} = 5 \]