AP Calculus BC 4.2 Straight-Line Motion: Connecting Position, Velocity, and Acceleration - FRQs - Exam Style Questions
No-Calc Question
t (minutes) | 0 | 12 | 20 | 24 | 40 |
v(t) (meters per minute) | 0 | 200 | 240 | -220 | 150 |
Approximate the value of \(\displaystyle \int_{0}^{40}\!|v(t)|\,dt\) using a right Riemann sum with the four subintervals indicated in the table.
Find Bob’s acceleration at time \(t=5\).
Most-appropriate topic codes (CED):
• TOPIC 6.3: Riemann Sums, Summation Notation, and Definite Integral Notation — part (b)
• TOPIC 4.2: Straight-Line Motion: Connecting Position, Velocity, and Acceleration — part (c)
• TOPIC 8.1: Finding the Average Value of a Function on an Interval — part (d)
▶️ Answer/Explanation
(a)
Symmetric difference about \(t=16\) using \(t=12\) and \(t=20\):
\(\displaystyle v'(16)\approx \frac{v(20)-v(12)}{20-12}=\frac{240-200}{8}= \boxed{5\ \text{m/min}^2}.\)
(b)
Meaning: \(\displaystyle \int_{0}^{40}\!|v(t)|\,dt\) is the total distance Johanna travels (meters) for \(0\le t\le 40\).
Right Riemann sum on \([0,12],[12,20],[20,24],[24,40]\):
\(\displaystyle \int_{0}^{40}\!|v(t)|\,dt \approx 12\times|v(12)|+8\times|v(20)|+4\times|v(24)|+16\times|v(40)|\)
\(=12\times200+8\times240+4\times220+16\times150\)
\(=2400+1920+880+2400=\boxed{7600\ \text{meters}}.\)
(c)
\(B(t)=t^{3}-6t^{2}+300\ \Rightarrow\ B'(t)=3t^{2}-12t\) (acceleration, m/min\(^2\)).
\(B'(5)=3\cdot25-12\cdot5=75-60=\boxed{15\ \text{m/min}^{2}}.\)
(d)
Average velocity on \([0,10]\): \(\displaystyle \bar v=\frac{1}{10}\int_{0}^{10}B(t)\,dt\).
\(\displaystyle \int B(t)\,dt=\frac{t^{4}}{4}-2t^{3}+300t\). Evaluate \(0\to 10\):
\(\displaystyle \bar v=\frac{1}{10}\Big[\frac{10^{4}}{4}-2\cdot10^{3}+300\cdot10\Big]\) \(=\frac{1}{10}(2500-2000+3000)=\boxed{350\ \text{m/min}}.\)