Home / AP Calculus BC : 5.4 Using the First Derivative Test to Determine Relative (Local) Extrema- Exam Style questions with Answer- MCQ

AP Calculus BC : 5.4 Using the First Derivative Test to Determine Relative (Local) Extrema- Exam Style questions with Answer- MCQ

Question

For what value of k will  \(x+\frac{k}{x}\) have a relative maximum at x = −2? 

(A) –4              (B) –2                      (C) 2                (D) 4                         (E) None of these

▶️ Answer/Explanation
Solution

Step 1: Find the first derivative

Given \( f(x) = x + \frac{k}{x} \), the first derivative is:

\[ f'(x) = 1 – \frac{k}{x^2} \]

Step 2: Set derivative to zero at x = -2

\[ f'(-2) = 1 – \frac{k}{(-2)^2} = 1 – \frac{k}{4} = 0 \] \[ \frac{k}{4} = 1 \] \[ k = 4 \]

Step 3: Verify it’s a maximum

Second derivative:

\[ f”(x) = \frac{2k}{x^3} \]

At \( x = -2 \) with \( k = 4 \):

\[ f”(-2) = \frac{8}{-8} = -1 < 0 \]

Since \( f”(-2) < 0 \), this confirms a relative maximum at \( x = -2 \).

Conclusion:

The value \( k = 4 \) satisfies the condition for a relative maximum at \( x = -2 \).

✅ Answer: D) 4

Question

At what values of x does  \(f(x)=3x^5+5x^3+15\)  have a relative maximum?

(A) –1 only            (B) 0 only               (C) 1 only            (D) –1 and 1 only       (E) –1, 0 and 1

▶️ Answer/Explanation
Solution

1. Find critical points:
\( f'(x) = 15x^4 – 15x^2 = 15x^2(x^2 – 1) \)
Critical points at \( x = -1, 0, 1 \)

2. Test for maximum:
Only \( x = -1 \) changes from \( f’ > 0 \) to \( f’ < 0 \)

Conclusion: Relative maximum only at \( x = -1 \)

✅ Answer: A) -1 only

Question 

 A polynomial p (x ) has a relative maximum at (−2, 4) , a relative minimum at ( 1,1 ), a relative  maximum at ( 5,7)  and no other critical points. How many zeros does p ( x)  have?
(A) One                 (B) Two                          (C) Three                            (D) Four                          (E) Five

▶️ Answer/Explanation
Solution

Key Observations:

  1. The polynomial must be at least 4th degree (3 critical points)
  2. Behavior analysis:
    • As x→-∞: p(x)→-∞ (odd degree behavior)
    • At (-2,4): Maximum – curve turns downward
    • At (1,1): Minimum – curve turns upward
    • At (5,7): Maximum – curve turns downward
    • As x→∞: p(x)→-∞ (odd degree behavior)

Zero crossings:

  • From -∞ to (-2,4): Crosses x-axis once (y changes from -∞ to +4)
  • Between (-2,4) and (5,7): Crosses x-axis once (y decreases from 4 to 1 then increases to 7)
  • No additional crossings after (5,7) as y decreases from 7 to -∞

✅ Answer: B) Two (exactly 2 zeros)

Question

 The derivative of f is \(x^{4}(x-2)(x+3)\) . At how many points will the graph of f have a relative maximum?
(A) None                         (B) One                                (C) Two                                      (D) Three                                             (E) Four

▶️ Answer/Explanation
Solution

Critical Points:
\( f'(x) = x^4(x-2)(x+3) = 0 \) at \( x = -3, 0, 2 \)

Sign Analysis:

IntervalSign of \( f'(x)\)Behavior
x < -3+Increasing
-3 < x < 0Decreasing
0 < x < 2Decreasing
x > 2+Increasing

Relative Maximum:
Only at \( x = -3 \) (\(f’ \)changes from + to -)
At \( x = 0 \): No extremum (even multiplicity)
At \( x = 2 \): Relative minimum (\(f’ \)changes from – to +)

✅ Answer: B) One

Scroll to Top