Home / AP Calculus BC : 5.7 Using the Second Derivative Test to  Determine Extrema- Exam Style questions with Answer- MCQ

AP Calculus BC : 5.7 Using the Second Derivative Test to  Determine Extrema- Exam Style questions with Answer- MCQ

Question

 Find an inflection point for the function \(f(x)=2x(x+4)^{3}\)
(A) (0, 0)
(B) (-4, 0)
(C) (-2, 4)
(D) (4, 0)

▶️ Answer/Explanation
Solution

First derivative: \( f'(x) = 2 (x + 4)^3 + 6x (x + 4)^2 \).

Second derivative: \( f”(x) = 12 (x + 4)(2x + 4) \).

Set \( f”(x) = 0 \): \( x = -4 \) or \( x = -2 \).

At \( x = -4 \), concavity changes (\( f”(-5) > 0 \), \( f”(-3) < 0 \)); \( f(-4) = 0 \), so point is \((-4, 0)\).

At \( x = -2 \), no change in concavity.

✅ Answer: B) (-4, 0)

Question

If \(f(x)=\left | x^{2} -4\right |\), which of the following statements about f is/are true?
I. f is continuous on the interval (-∞, +∞).
II. f has points of inflection at x = ±2.
III. f has a relative maximum at (0, 4).
(A) I only
(B) II only
(C) III only
(D) I and III

▶️ Answer/Explanation
Solution

\( f(x) = x^2 – 4 \) for \( x \leq -2 \) or \( x \geq 2 \), \( f(x) = -x^2 + 4 \) for \( -2 < x < 2 \).

I. Continuity: Limits at \( x = \pm 2 \) match \( f(\pm 2) = 0 \), so \( f \) is continuous everywhere.

II. Inflection points: \( f”(x) = 2 \) or \( -2 \) (no zeros), and \( f”(x) \) undefined at \( x = \pm 2 \) (corners), so no inflection at \( x = \pm 2 \).

III. Relative maximum: \( f(0) = 4 \), \( f(1) = 3 \), \( f(-1) = 3 \), minima at \( x = \pm 2 \) (0), so \( (0, 4) \) is a maximum.

Thus, I and III are true.

✅ Answer: D) I and III

Question

The derivative of
\(f(x)=\frac{x^{4}}{3}-\frac{x^{5}}{5}\) attains its maximum value at x =

(A) –1                                  (B) 0                                          (C) 1                          (D)\(-\frac{1}{8} \)                          (E)\(-\frac{1}{2}\)

▶️ Answer/Explanation
Solution

The first derivative is: \[ f'(x) = \frac{4x^3}{3} – x^4 \]

The second derivative is: \[ f”(x) = 4x^2 – 4x^3 = 4x^2(1 – x) \]

Critical points occur where \( f”(x) = 0 \): \[ x = 0 \text{ and } x = 1 \]

Concavity test:

IntervalTest ValueSign of f”(x)Concavity
x < 0x = -1f”(-1) = 4(1) – 4(-1) = 8 > 0Up
0 < x < 1x = 0.5f”(0.5) = 4(0.25) – 4(0.125) = 0.5 > 0Up
x > 1x = 2f”(2) = 4(4) – 4(8) = -16 < 0Down

The maximum of \( f'(x) \) occurs at \( x = 1 \) where the concavity changes from upward to downward.

Correct Answer: C) 1

Question

An equation of the line tangent to  \(y=x^{3}+3x^{2}+2\) at its point of inflection is

(A)y=-6x-6                          (B)y=-3x+1                      (C)y=2x+10                       (D)y=3x-1                              (E)y=4x+1

▶️ Answer/Explanation
Solution

Finding the point of inflection:

First derivative: \[ y’ = 3x^2 + 6x \]

Second derivative: \[ y” = 6x + 6 \]

Set \( y” = 0 \) to find inflection point: \[ 6x + 6 = 0 \] \[ x = -1 \]

Concavity analysis:

IntervalTest ValueSign of y”Concavity
x < -1x = -2y”(-2) = -6 < 0Down
x > -1x = 0y”(0) = 6 > 0Up

Finding the tangent line:

1. Point coordinates at x = -1: \[ y(-1) = (-1)^3 + 3(-1)^2 + 2 = -1 + 3 + 2 = 4 \] Point: (-1, 4)

2. Slope at x = -1: \[ y'(-1) = 3(-1)^2 + 6(-1) = 3 – 6 = -3 \]

3. Tangent line equation: \[ y – 4 = -3(x – (-1)) \] \[ y = -3x – 3 + 4 \] \[ y = -3x + 1 \]

Correct Answer: B) y = -3x + 1

Scroll to Top