Home / AP Calculus AB : 6.1 Exploring Accumulations of  Change- Exam Style questions with Answer- MCQ

AP Calculus AB : 6.1 Exploring Accumulations of  Change- Exam Style questions with Answer- MCQ

Question

The graph of a piecewise-linear function f , for \(−1 ≤ x  ≤4 \), is shown above. What is the value of \(\int_{-1}^{4}f(x)dx\)?

(A) 1                                         (B) 2.5                              (C) 4                               (D) 5.5                                        (E) 8

▶️Answer/Explanation

Ans:B

\(\int_{-1}^{4}f(x)dx=\int_{-1}^{2}f(x)dx+\int_{2}^{4}f(x)dx\)
= Area of trapezoid(1) – Area of trapezoid(2) = 4 -1.5= 2.5 

Question
\(\int \frac{e^{\sqrt{x}}}{\sqrt{x}} \, dx =\)
(A) \(2e^{\sqrt{x}} + C\)
(B) \(\frac{1}{2}e^{\sqrt{x}} + C\)
(C) \(e^{\sqrt{x}} + C\)
(D) \(2\sqrt{x}e^{\sqrt{x}} + C\)
(E) \(\frac{1}{2}\frac{e^{\sqrt{x}}}{\sqrt{x}} + C\)
▶️ Answer/Explanation
Solution
Substitute \( u = \sqrt{x} \), so \( x = u^2 \) and \( dx = 2u \, du \).
Integral becomes: \(\int \frac{e^u}{u} \cdot 2u \, du = \int 2e^u \, du\).
Integrate: \( 2 \int e^u \, du = 2e^u + C \).
Substitute back \( u = \sqrt{x} \): \( 2e^{\sqrt{x}} + C \).
✅ Answer: A
Question
For all \( x > 1 \), if \( f(x) = \int_{1}^{x} \frac{1}{t} \, dt \), then \( f'(x) = \)
(A) 1
(B) \(\frac{1}{x}\)
(C) \(\ln x – 1\)
(D) \(\ln x\)
(E) \(e^{x}\)
▶️ Answer/Explanation
Solution
By the Fundamental Theorem of Calculus, if \( f(x) = \int_{a}^{x} g(t) \, dt \), then \( f'(x) = g(x) \).
Here, \( f(x) = \int_{1}^{x} \frac{1}{t} \, dt \), so \( f'(x) = \frac{1}{x} \).
✅ Answer: B
Question
\(\frac{d}{dx} \int_{0}^{x} \cos(2\pi u) \, du \) is
(A) 0
(B) \(\frac{1}{2\pi} \sin x\)
(C) \(\frac{1}{2\pi} \cos(2\pi x)\)
(D) \(\cos(2\pi x)\)
(E) \(2\pi \cos(2\pi x)\)
▶️ Answer/Explanation
Solution
By the Fundamental Theorem of Calculus, \(\frac{d}{dx} \int_{a}^{x} f(u) \, du = f(x)\).
Here, \(\frac{d}{dx} \int_{0}^{x} \cos(2\pi u) \, du = \cos(2\pi x)\).
✅ Answer: D
Scroll to Top