Home / AP Calculus AB : 6.10 Integrating Functions Using Long Division and Completing the Square- Exam Style questions with Answer- MCQ

AP Calculus AB : 6.10 Integrating Functions Using Long Division and Completing the Square- Exam Style questions with Answer- MCQ

Question

\(\int \frac{x^{2}+1}{(x^{2}+3x-5)^{2}}dx\)

A \(\int -\frac{3}{2}\frac{1}{(3x^{2}+3)^{2}} +c\)

B  \(\int -\frac{1}{6}\frac{1}{(3x^{2}+3)^{2}} +c\)

C \(\int -\frac{3}{2}\frac{1}{x^{2}+3x-5)^{2}} +c\)

D \(\int -\frac{1}{6}\frac{1}{x^{2}+3x-5)^{2}} +c\)

▶️Answer/Explanation

Ans:D

Starting with the substitution \(u=x^{3}+3x-5,u=x^{3}+3x-5\Rightarrow \frac{\mathrm{d} u}{\mathrm{d} x}=3x^{2}+3=3(x^{2}+1)\Rightarrow dx=\frac{dy}{3(x^{2}+1)}\)

Substituting for \(x^{3}+3x-5\)  and for

dx

gives \(\int \frac{x^{2}+1}{x^{2}+3x-5}dx=\int \frac{1}{u^{3}}\frac{1}{3}du=\frac{1}{3}.(-\frac{1}{2u^{2}})+c=-\frac{1}{6}.\frac{1}{(x^{2}+)}\)

Question

\(\int \frac{xdx}{\sqrt{3x^{2}+5}}\)=

(A)\(\frac{1}{9}\left ( 3x^{2}+5 \right )^{\frac{3}{2}}+C\)            (B)\(\frac{1}{4}\left ( 3x^{2}+5 \right )^{\frac{3}{2}}+C\)                  (C)\(\frac{1}{12}\left ( 3x^{2}+5 \right )^{\frac{1}{2}}+C\)        (D)\(\frac{1}{3}\left ( 3x^{2}+5 \right )^{\frac{3}{2}}+C \)     (E)\(\frac{3}{2}\left ( 3x^{2}+5 \right )^{\frac{1}{2}}+C\)

▶️Answer/Explanation

Ans:D

Question

\(\int_{0}^{\frac{\pi }{2}}\frac{cos\Theta }{\sqrt{1+sin\Theta }}d\Theta\)

(A)\(-2\left ( \sqrt{2}-1 \right ) \)                   (B)\(( -2\sqrt{2})\)                    (C)\(( -2\sqrt{2})\)               (D)\(2(\sqrt{2}-1)\)                      (E)\(2(\sqrt{2}+1)\)

▶️Answer/Explanation

Ans:D

\(\int_{0}^{\frac{\pi}{2}}(1+sin \theta)^{-1/2}(cos \theta d \theta)=2(1+sin \theta)^{-1/2}|_{0}^{\frac{\pi}{2}}=2(\sqrt{2-1})\)

Question

\( \int_{2}^{3}\frac{x}{x^{2}+1}dx=\)
(A)\(\frac{1}{2}ln \frac{3}{2}\)               (B)\(\frac{1}{2}ln2 \)                      (C) ln 2 (D) 2ln 2                  (E)\(\frac{1}{2}ln5\)

▶️Answer/Explanation

Ans:B

Scroll to Top