Home / AP Calculus BC : 6.10 Integrating Functions Using Long Division and Completing the Square- Exam Style questions with Answer- MCQ

AP Calculus BC : 6.10 Integrating Functions Using Long Division and Completing the Square- Exam Style questions with Answer- MCQ

Question

\(\int \frac{xdx}{\sqrt{3x^{2}+5}}\)=

(A)\(\frac{1}{9}\left ( 3x^{2}+5 \right )^{\frac{3}{2}}+C\)            (B)\(\frac{1}{4}\left ( 3x^{2}+5 \right )^{\frac{3}{2}}+C\)                  (C)\(\frac{1}{12}\left ( 3x^{2}+5 \right )^{\frac{1}{2}}+C\)        (D)\(\frac{1}{3}\left ( 3x^{2}+5 \right )^{\frac{3}{2}}+C \)     (E)\(\frac{3}{2}\left ( 3x^{2}+5 \right )^{\frac{1}{2}}+C\)

Answer/Explanation

Ans:D

Question

\(\int_{0}^{\frac{\pi }{2}}\frac{cos\Theta }{\sqrt{1+sin\Theta }}d\Theta\)

(A)\(-2\left ( \sqrt{2}-1 \right ) \)                   (B)\(( -2\sqrt{2})\)                    (C)\(( -2\sqrt{2})\)               (D)\(2(\sqrt{2}-1)\)                      (E)\(2(\sqrt{2}+1)\)

Answer/Explanation

Ans:D

 

Question

\( \int_{2}^{3}\frac{x}{x^{2}+1}dx=\)
(A)\(\frac{1}{2}ln \frac{3}{2}\)               (B)\(\frac{1}{2}ln2 \)                      (C) ln 2 (D) 2ln 2                  (E)\(\frac{1}{2}ln5\)

Answer/Explanation

Ans:B

Scroll to Top