Home / AP Calculus AB : 6.2 Approximating Areas  with Riemann Sums- Exam Style questions with Answer- MCQ

AP Calculus AB : 6.2 Approximating Areas  with Riemann Sums- Exam Style questions with Answer- MCQ

Question

 The expression  \((\frac{1}{50}\left ( \sqrt{\frac{1}{50}+}\sqrt{\frac{2}{50}}+\sqrt{\frac{3}{50}}+…+\sqrt{\frac{50}{50}} \right )\) is a Riemann sum approximation for

(A)\(\int_{0}^{1}\sqrt{\frac{x}{50}}dx\)

(B)\(\int_{0}^{1}\sqrt{X}dx\)

(C)\(\frac{1}{50}\int_{0}^{1}\sqrt{\frac{x}{50}}dx \)

(D)\(\frac{1}{50}\int_{0}^{1}\sqrt{x}dx\)

(E)\(\frac{1}{50}\int_{0}^{50}\sqrt{x}dx\)

▶️Answer/Explanation

Ans:B

Question
Graph of function f A left Riemann sum, a right Riemann sum, and a trapezoidal sum approximate \(\int_{0}^{1} f(x) \, dx\), each with same number of subintervals. Graph of \( f \) shown. Which sums underestimate \(\int_{0}^{1} f(x) \, dx\)?
I. Left sum
II. Right sum
III. Trapezoidal sum
(A) I only
(B) II only
(C) III only
(D) I and III only
(E) II and III only
▶️ Answer/Explanation
Solution
Graph shows \( f(x) \) is concave down (decreasing slope) from 0 to 1.
Left Riemann sum underestimates as rectangles lie below curve.
Right Riemann sum overestimates as rectangles lie above curve.
Trapezoidal sum underestimates as average of left and right, but curve’s concavity pulls it below integral.
Thus, I and III underestimate.
✅ Answer: D
Question
Which limit equals \(\int_{3}^{5} x^4 \, dx\)?
(A) \(\lim_{n \to \infty} \sum_{k=1}^{n} \left( 3 + \frac{k}{n} \right)^4 \frac{1}{n}\)
(B) \(\lim_{n \to \infty} \sum_{k=1}^{n} \left( 3 + \frac{k}{n} \right)^4 \frac{2}{n}\)
(C) \(\lim_{n \to \infty} \sum_{k=1}^{n} \left( 3 + \frac{2k}{n} \right)^4 \frac{1}{n}\)
(D) \(\lim_{n \to \infty} \sum_{k=1}^{n} \left( 3 + \frac{2k}{n} \right)^4 \frac{2}{n}\)
▶️ Answer/Explanation
Solution
For \(\int_{a}^{b} f(x) \, dx\), a Riemann sum is \(\lim_{n \to \infty} \sum_{k=1}^{n} f(x_k) \Delta x\), where \(\Delta x = \frac{b-a}{n}\), \(x_k = a + k \Delta x\).
Here, \(a = 3\), \(b = 5\), \(f(x) = x^4\), so \(\Delta x = \frac{5-3}{n} = \frac{2}{n}\), \(x_k = 3 + k \cdot \frac{2}{n}\).
Sum: \(\lim_{n \to \infty} \sum_{k=1}^{n} \left( 3 + \frac{2k}{n} \right)^4 \frac{2}{n}\).
✅ Answer: D
Question
If \(\int_{0}^{2} e^{x^2} \, dx\) is approximated using two inscribed rectangles of equal width, then by trapezoidal rule with \( n = 2 \), the difference between the two approximations is
(A) 53.60
(B) 30.51
(C) 27.80
(D) 26.80
(E) 12.78
▶️ Answer/Explanation
Solution
Two inscribed rectangles, width = 1. Use left endpoints: \( x = 0, 1 \). Area = \( e^{0^2} \cdot 1 + e^{1^2} \cdot 1 = 1 + e \approx 3.718 \).
Trapezoidal rule, \( n = 2 \), width = 1. Points: \( x = 0, 1, 2 \). Area = \(\frac{1}{2} (e^{0^2} + 2e^{1^2} + e^{2^2}) = \frac{1 + 2e + e^4}{2} \approx 30.517\).
Difference: \(\frac{1 + 2e + e^4}{2} – (1 + e) = \frac{e^4 – 1}{2} \approx 26.799\).
Rounded: 26.80.
✅ Answer: D
Scroll to Top