Question
The expression \((\frac{1}{50}\left ( \sqrt{\frac{1}{50}+}\sqrt{\frac{2}{50}}+\sqrt{\frac{3}{50}}+…+\sqrt{\frac{50}{50}} \right )\) is a Riemann sum approximation for
(A)\(\int_{0}^{1}\sqrt{\frac{x}{50}}dx\)
(B)\(\int_{0}^{1}\sqrt{X}dx\)
(C)\(\frac{1}{50}\int_{0}^{1}\sqrt{\frac{x}{50}}dx \)
(D)\(\frac{1}{50}\int_{0}^{1}\sqrt{x}dx\)
(E)\(\frac{1}{50}\int_{0}^{50}\sqrt{x}dx\)
▶️Answer/Explanation
Ans:B
Question

I. Left sum
II. Right sum
III. Trapezoidal sum
(A) I only
(B) II only
(C) III only
(D) I and III only
(E) II and III only
II. Right sum
III. Trapezoidal sum
(A) I only
(B) II only
(C) III only
(D) I and III only
(E) II and III only
▶️ Answer/Explanation
Solution
Graph shows \( f(x) \) is concave down (decreasing slope) from 0 to 1.
Left Riemann sum underestimates as rectangles lie below curve.
Right Riemann sum overestimates as rectangles lie above curve.
Trapezoidal sum underestimates as average of left and right, but curve’s concavity pulls it below integral.
Thus, I and III underestimate.
✅ Answer: D
Question
Which limit equals \(\int_{3}^{5} x^4 \, dx\)?
(A) \(\lim_{n \to \infty} \sum_{k=1}^{n} \left( 3 + \frac{k}{n} \right)^4 \frac{1}{n}\)
(B) \(\lim_{n \to \infty} \sum_{k=1}^{n} \left( 3 + \frac{k}{n} \right)^4 \frac{2}{n}\)
(C) \(\lim_{n \to \infty} \sum_{k=1}^{n} \left( 3 + \frac{2k}{n} \right)^4 \frac{1}{n}\)
(D) \(\lim_{n \to \infty} \sum_{k=1}^{n} \left( 3 + \frac{2k}{n} \right)^4 \frac{2}{n}\)
(B) \(\lim_{n \to \infty} \sum_{k=1}^{n} \left( 3 + \frac{k}{n} \right)^4 \frac{2}{n}\)
(C) \(\lim_{n \to \infty} \sum_{k=1}^{n} \left( 3 + \frac{2k}{n} \right)^4 \frac{1}{n}\)
(D) \(\lim_{n \to \infty} \sum_{k=1}^{n} \left( 3 + \frac{2k}{n} \right)^4 \frac{2}{n}\)
▶️ Answer/Explanation
Solution
For \(\int_{a}^{b} f(x) \, dx\), a Riemann sum is \(\lim_{n \to \infty} \sum_{k=1}^{n} f(x_k) \Delta x\), where \(\Delta x = \frac{b-a}{n}\), \(x_k = a + k \Delta x\).
Here, \(a = 3\), \(b = 5\), \(f(x) = x^4\), so \(\Delta x = \frac{5-3}{n} = \frac{2}{n}\), \(x_k = 3 + k \cdot \frac{2}{n}\).
Sum: \(\lim_{n \to \infty} \sum_{k=1}^{n} \left( 3 + \frac{2k}{n} \right)^4 \frac{2}{n}\).
✅ Answer: D
Question
If \(\int_{0}^{2} e^{x^2} \, dx\) is approximated using two inscribed rectangles of equal width, then by trapezoidal rule with \( n = 2 \), the difference between the two approximations is
(A) 53.60
(B) 30.51
(C) 27.80
(D) 26.80
(E) 12.78
(B) 30.51
(C) 27.80
(D) 26.80
(E) 12.78
▶️ Answer/Explanation
Solution
Two inscribed rectangles, width = 1. Use left endpoints: \( x = 0, 1 \). Area = \( e^{0^2} \cdot 1 + e^{1^2} \cdot 1 = 1 + e \approx 3.718 \).
Trapezoidal rule, \( n = 2 \), width = 1. Points: \( x = 0, 1, 2 \). Area = \(\frac{1}{2} (e^{0^2} + 2e^{1^2} + e^{2^2}) = \frac{1 + 2e + e^4}{2} \approx 30.517\).
Difference: \(\frac{1 + 2e + e^4}{2} – (1 + e) = \frac{e^4 – 1}{2} \approx 26.799\).
Rounded: 26.80.
✅ Answer: D