Question.
\(\lim_{n\rightarrow \infty }\frac{1}{n}\left [ \sqrt{\frac{1}{2}}+\frac{2}{n} +….+\frac{n}{n}\right ]\)=
(A)\(\frac{1}{2}\int_{0}^{1}\frac{1}{\sqrt{x}}dx\) (B)\(\int_{0}^{1}\sqrt{x}dx\) (C)\(\int_{0}^{1}xdx\) (D) \(\int_{1}^{2}xdx\) (E)\(2\int_{1}^{2}x\sqrt{x}dx\)
▶️ Answer/Explanation
• Interval: [0,1] divided into n equal subintervals
• Sample points: right endpoints \( x_k = \frac{k}{n} \)
For \(-1 < x < 1\), if \( f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}x^{2n-1}}{2n-1} \), then \( f'(x) \) =
(A) \(\sum_{n=1}^{\infty}(-1)^{n+1}x^{2n-2}\)
(B) \(\sum_{n=1}^{\infty}(-1)^{n}x^{2n-2}\)
(C) \(\sum_{n=1}^{\infty}(-1)^{2n}x^{2n}\)
(D) \(\sum_{n=1}^{\infty}(-1)^{n}x^{2n}\)
(E) \(\sum_{n=1}^{\infty}(-1)^{n+1}x^{2n}\)
▶️ Answer/Explanation
For n=2: \( (-1)^3x^2 = -x^2 \)
For n=3: \( (-1)^4x^4 = x^4 \)
And so on…
If n is a positive integer, then \(\left [ \left( \frac{1}{n} \right)^{2} + \left( \frac{2}{n} \right)^{2} + \cdots + \left( \frac{3n}{n} \right)^{2} \right ] \) can be expressed as
(A) \(\int_{0}^{1}\frac{1}{x^{2}}dx\)
(B) \(3 \int_{0}^{1}\left( \frac{1}{x} \right)^{2}dx\)
(C) \(\int_{0}^{3}\left( \frac{1}{x} \right)^{2}dx\)
(D) \(\int_{0}^{3}x^{2}dx\)
(E) \(3 \int_{0}^{3}x^{2}dx\)
▶️ Answer/Explanation
• Interval: [0,3] divided into 3n subintervals of width \( \frac{1}{n} \)
• Sample points: right endpoints \( x_k = \frac{k}{n} \)
The closed interval [a, b] is partitioned into n equal subintervals, each of width Δx, by the numbers \( x_0, x_1, \ldots, x_n \) where \( a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b \). What is \( \lim_{n\rightarrow \infty} \sum_{i=1}^{n} \sqrt{x_i} \Delta x \)?
(A) \( \frac{2}{3} \left( b^{\frac{3}{2}} – a^{\frac{3}{2}} \right) \)
(B) \( b^{\frac{3}{2}} – a^{\frac{3}{2}} \)
(C) \( \frac{3}{2} \left( b^{\frac{3}{2}} – a^{\frac{3}{2}} \right) \)
(D) \( b^{\frac{1}{2}} – a^{\frac{1}{2}} \)
(E) \( 2 \left( b^{\frac{1}{2}} – a^{\frac{1}{2}} \right) \)