Home / AP Calculus AB : 6.7 The Fundamental Theorem of Calculus and Definite Integrals- Exam Style questions with Answer- MCQ

AP Calculus AB : 6.7 The Fundamental Theorem of Calculus and Definite Integrals- Exam Style questions with Answer- MCQ

Question

If \(\begin{Bmatrix}
f(x)=8-x^{2} for -2\leq x\leq 2 & then \int_{-1}^{3} & \\
f(x)=x^{2} & elsewhere, &
\end{Bmatrix} \) f(x)  is a number between

(A) 0 and 8                 (B) 8 and 16                              (C) 16 and 24                            (D) 24 and 32                                          (E) 32 and 40

▶️Answer/Explanation

Ans:D

 \(\int_{-1}^{3}f(x)dx= \int_{-1}^{2}(8-x^{2})dx+\int_{2}^{3}x^{2}dx=\left ( 8x-\frac{1}{3}x^{3} \right )\)

Question

If F and f are continuous functions such that  F'(x ) =F(x for all x, then  \(\int_{a}^{b}f(x) dx\) is

(A) F'(a )- f’ ( b) 
(B) F'(b )- F'(a ) 
(C)  F(a)- F(b) 
(D) F(b )-F’ (a ) 
(E) none of the above

▶️Answer/Explanation

Ans:D

 By the Fundamental Theorem of Calculus,\(\int_{a}^{b}f(x)dx=F(b)-F(a) where F'(x)=f'(x)\).

Question

\(\int_{0}^{\pi /4} tan^{2}dx\)=
(A)\(\frac{\pi }{4}-1\)                   (B)\( 1-\frac{\pi }{4}\)            (C) \(\frac{1}{3}\)               (D)\(\sqrt{2}-1\)                                 (E)\(\frac{\pi }{4}+1\)

▶️Answer/Explanation

Ans:B

\(\int_{0}^{\pi/4}tan^2xdx =\int_{0}^{\pi/4}(sec^2x-1)dx=(tanx-x)|_{0}^{\pi/4}=1-\frac{\pi}{4}\)

Question

\(\int_{1}^{2} \frac{x-4}{x^{2}}dx\)=
(A)\(-\frac{1}{2}\)                                                       (B) In2-2                                (C) In2                              (D) 2                                                        (E) In2+2

▶️Answer/Explanation

Ans:B

Scroll to Top