Home / AP Calculus BC : 6.7 The Fundamental Theorem of Calculus and Definite Integrals- Exam Style questions with Answer- MCQ

AP Calculus BC : 6.7 The Fundamental Theorem of Calculus and Definite Integrals- Exam Style questions with Answer- MCQ

Question

\(\begin{Bmatrix}
f(x)=8-x^{2} for -2\leq x\leq 2& & \\
f(x)=x^{2} & &
\end{Bmatrix}  \int_{-1}^{3}\)  then is a number between

(A) 0 and 8               (B) 8 and 16                      (C) 16 and 24                            (D) 24 and 32                            (E) 32 and 40

Answer/Explanation

Ans:D

 

Question

\(\int_{0}^{\pi /4}tan^{2}xdx\)=
(A)\(\frac{\pi }{4}\)                  (B)\(1-\frac{\pi }{4}\)                         (C)\(\frac{1}{3}\)                     (D)\(\sqrt{2}-1\)                      (E)\(\frac{\pi }{4}+1\)

Answer/Explanation

Ans:B

 

Question

\(\int_{1}^{2}\frac{x-4}{x^{2}}dx\)
(A)\(-\frac{1}{2}\)                                               (B)In2-2                                     (C)In2                                     (D)2                                                          (E)In2+2

Answer/Explanation

Ans:B

Question

 If \(f(x)=\int_{\frac{\pi }{2}}^{x}\tan ^{-1}tdt\) find \(f{}’\left ( \frac{\pi }{6} \right )\) to the nearest thousandth.
(A) -0.4823
(B) 0.4823
(C) 0.5236
(D) 0.5774

Answer/Explanation

Ans:(B)

 

Question

If  \(f(x)=e^{2x}\) and \(f'(x)=2e^{2x}\) , find \(\int_{2}^{4}f'(x)dx\)
(A) \(\frac{e^{4}(e^{4}-1)}{2}\)
(B) \(e^{4}(e^{4}-1)\)
(C) \(2e^{4}(e^{4}-1)\)
(D) \(4e^{4}(e^{4}-1)\)

Answer/Explanation

Ans:(B)

Scroll to Top