Home / AP Calculus AB : 6.8 Finding Antiderivatives and Indefinite Integrals: Basic Rules and Notation- Exam Style questions with Answer- MCQ

AP Calculus AB : 6.8 Finding Antiderivatives and Indefinite Integrals: Basic Rules and Notation- Exam Style questions with Answer- MCQ

Question

\(\int_{\pi /4}^{\pi /2}\frac{cosx}{sinx}dx\)=

(A)In\(\sqrt{2} \)          (B)In\(\frac{\pi }{4}  \)         (C)In\(\sqrt{3}\)             (D)In\(\frac{\sqrt{3}}{2}\)                  (E)Ine

▶️Answer/Explanation

Ans:A

Question

\(\int \frac{5}{1+x^{2}}dx\)=

(A)\(\frac{-10x}{(1+x^{2})^{2}}+C\)          (B) \(\frac{5}{2x}In (1+x^{2})+C\)             (C)\(5x-\frac{5}{x}+C\)          (D)\(5arctanx+C\)           (E)\(5In(1+x^{2})+C\)

▶️Answer/Explanation

Ans:D

Question

If \(\frac{dy}{dx} =tanx\),then y=

(A)\(\frac{1}{2}tan^{2}x+C\)                      (B)\(sec^{2}x+C\)                     (C)\(In|secx|+c \)              (D) In|cosx|+C                            (E) secxtanx+C

▶️Answer/Explanation

Ans:C

 \(\int tanx dx=\int \frac{sinx}{cosx}dx=-ln|cosx|+C=ln |secx|+C\)

Question

\(\int_{\pi /4}^{\pi /2}\frac{cosx}{sinx}dx\)=

(A)In\(\sqrt{2} \)          (B)In\(\frac{\pi }{4}  \)         (C)In\(\sqrt{3}\)             (D)In\(\frac{\sqrt{3}}{2}\)                  (E)Ine

▶️Answer/Explanation

Ans:A

\(\int_{\pi/4}^{\pi/2}\frac{cosx}{sinx}dx=ln (sinx)|_{\pi/4}^{\pi/2}=ln 1-ln\frac{1}{\sqrt{2}}=ln\sqrt{2}\)

Question

\(\int sin(2x+3)dx=\)

(A)\(\frac{1}{2}cos(2x+3)+c\)             (B)\((cos(2x+x)+C  \)              (C)\(-cos(2x+3)+C\)                  (D)\(-\frac{1}{2}cos(2x+3)+C\)          (E)\(-\frac{1}{5}cos(2x+3)+C\)

▶️Answer/Explanation

Ans:D

\( \int sin (2x+3)dx=-\frac{1}{2}cos(2x+3)+C\)

Scroll to Top