Question
\(\int_{0}^{8} \frac{dx}{\sqrt{1 + x}} =\)
(A) 1
(B) \(\frac{3}{2}\)
(C) 2
(D) 4
(E) 6
(B) \(\frac{3}{2}\)
(C) 2
(D) 4
(E) 6
▶️ Answer/Explanation
Solution
Substitute \( u = 1 + x \), \( du = dx \), \( x = 0 \to u = 1 \), \( x = 8 \to u = 9 \).
Integral: \(\int_{1}^{9} \frac{du}{\sqrt{u}} = \int_{1}^{9} u^{-1/2} \, du = [2u^{1/2}]_{1}^{9}\).
Evaluate: \( 2(9^{1/2}) – 2(1^{1/2}) = 2 \cdot 3 – 2 \cdot 1 = 6 – 2 = 4 \).
✅ Answer: D
Question
\(\int_{0}^{1/2} \frac{2x}{\sqrt{1 – x^2}} \, dx =\)
(A) \(1 – \frac{\sqrt{3}}{2}\)
(B) \(\frac{1}{2} \ln \frac{3}{4}\)
(C) \(\frac{\pi}{6}\)
(D) \(\frac{\pi}{6} – 6\)
(E) \(2 – \sqrt{3}\)
(B) \(\frac{1}{2} \ln \frac{3}{4}\)
(C) \(\frac{\pi}{6}\)
(D) \(\frac{\pi}{6} – 6\)
(E) \(2 – \sqrt{3}\)
▶️ Answer/Explanation
Solution
Substitute \( u = 1 – x^2 \), \( du = -2x \, dx \), so \( 2x \, dx = -du \).
Limits: \( x = 0 \to u = 1 \), \( x = 1/2 \to u = 1 – (1/2)^2 = 1 – 1/4 = 3/4 \).
Integral: \(\int_{1}^{3/4} \frac{-du}{\sqrt{u}} = -\int_{1}^{3/4} u^{-1/2} \, du = -[2u^{1/2}]_{1}^{3/4}\).
Evaluate: \(- (2 \cdot (3/4)^{1/2} – 2 \cdot 1^{1/2}) = – (2 \cdot \sqrt{3}/2 – 2) = – (\sqrt{3} – 2) = 2 – \sqrt{3}\).
✅ Answer: E
Question
\(\int \frac{5}{1 + x^2} \, dx =\)
(A) \(\frac{-10x}{(1 + x^2)^2} + C\)
(B) \(\frac{5}{2x} \ln (1 + x^2) + C\)
(C) \(5x – \frac{5}{x} + C\)
(D) \(5 \arctan x + C\)
(E) \(5 \ln (1 + x^2) + C\)
(B) \(\frac{5}{2x} \ln (1 + x^2) + C\)
(C) \(5x – \frac{5}{x} + C\)
(D) \(5 \arctan x + C\)
(E) \(5 \ln (1 + x^2) + C\)
▶️ Answer/Explanation
Solution
Recognize \(\int \frac{1}{1 + x^2} \, dx = \arctan x + C\).
Constant factor: \(\int \frac{5}{1 + x^2} \, dx = 5 \int \frac{1}{1 + x^2} \, dx = 5 \arctan x + C\).
✅ Answer: D
Question
\(\int_{0}^{1} x e^{-x} \, dx =\)
(A) \(1 – 2e\)
(B) \(-1\)
(C) \(1 – 2e^{-1}\)
(D) \(1\)
(E) \(2e – 1\)
(B) \(-1\)
(C) \(1 – 2e^{-1}\)
(D) \(1\)
(E) \(2e – 1\)
▶️ Answer/Explanation
Solution
Use integration by parts: \(\int u \, dv = uv – \int v \, du\).
Let \( u = x \), \( dv = e^{-x} \, dx \), so \( du = dx \), \( v = \int e^{-x} \, dx = -e^{-x} \).
Integral: \(\int_{0}^{1} x e^{-x} \, dx = [x (-e^{-x})]_{0}^{1} – \int_{0}^{1} (-e^{-x}) \, dx\).
First term: \([-x e^{-x}]_{0}^{1} = (-1 \cdot e^{-1}) – (0 \cdot e^{0}) = -e^{-1}\).
Second term: \(\int_{0}^{1} e^{-x} \, dx = [-e^{-x}]_{0}^{1} = -e^{-1} – (-e^{0}) = -e^{-1} + 1\).
Total: \(-e^{-1} – (-e^{-1} + 1) = -e^{-1} + e^{-1} – 1 = 1 – 2e^{-1}\).
✅ Answer: C
Question
\(\int \frac{3x^2}{x^3 + 1} \, dx =\)
(A) \(2\sqrt{x^3 + 1} + C\)
(B) \(\frac{3}{2}\sqrt{x^3 + 1} + C\)
(C) \(\sqrt{x^3 + 1} + C\)
(D) \(\ln (x^3 + 1) + C\)
(E) \(\ln (x^3) + C\)
(B) \(\frac{3}{2}\sqrt{x^3 + 1} + C\)
(C) \(\sqrt{x^3 + 1} + C\)
(D) \(\ln (x^3 + 1) + C\)
(E) \(\ln (x^3) + C\)
▶️ Answer/Explanation
Solution
Substitute \( u = x^3 + 1 \), so \( du = 3x^2 \, dx \).
Integral: \(\int \frac{3x^2}{x^3 + 1} \, dx = \int \frac{du}{u} = \ln (x^3 + 1) + C\).
✅ Answer: D