Home / AP Calculus BC: 7.2 Verifying Solutions for  Differential Equations – Exam Style questions with Answer- FRQ

AP Calculus BC: 7.2 Verifying Solutions for  Differential Equations – Exam Style questions with Answer- FRQ

Question:

Consider the differential equation \(\frac{dy}{dx}=2x – y.\)

(a) On the axes provided, sketch a slope field for the given differential equation at the six points indicated.

(b) Find \(\frac{d^{2}y}{dx^{2}}\) in terms of x and y. Determine the concavity of all solution curves for the given differential equation in Quadrant II. Give a reason for your answer.
(c) Let y = f(x) be the particular solution to the differential equation with the initial condition f (2) = 3.
Does f have a relative minimum, a relative maximum, or neither at x = 2 ? Justify your answer.
(d) Find the values of the constants m and b for which y = mx + b is a solution to the differential equation. 

Answer/Explanation

Ans:

(b)

\(\frac{dy}{dx}= 2x – y\)

\(\frac{d^{2}y}{dx^{2}}= 2-\frac{dy}{dx}=2-(2x-y)\)

\(\frac{d^{2}y}{dx^{2}}= 2-2x+y\)

In Quadrant II, x < 0 and y > 0, So \(\frac{d^{2}y}{dx^{2}}= 2-2x+y>0,\)

Thus all solution curves in Quadrant II are concave up.

(c)

\(\frac{dy}{dx}= 2x-y=2.2-3 =1\)

Neither, as \(\frac{dy}{dx}\) ≠ 0   at x = 2.

(d)

\(\frac{dy}{dx}= 2x-y\),  y = mx + b

\(\frac{dy}{dx}= m = 2x – y\)

m = 2x – (mx + b)

m = (2-m)x – b,  equate coefficients

2 – m = 0

m = 2

-b = m

b = -m = -2.

m = 2,  b = -2

Scroll to Top