Home / AP Calculus AB : 7.2 Verifying Solutions for  Differential Equations- Exam Style questions with Answer- MCQ

AP Calculus AB : 7.2 Verifying Solutions for  Differential Equations- Exam Style questions with Answer- MCQ

Question
If \(\frac{dy}{dx} = -x \cos(x^2)\) and \(y = 2\) when \(x = 0\), then a solution to the differential equation is:
(A) \(y = -\frac{1}{2} \sin(x^2)\)
(B) \(y = -\frac{1}{2} (\sin(x))^2 + 2\)
(C) \(y = -\frac{1}{2} \cos(x^2) + 2\)
(D) \(y = -\frac{1}{2} \sin(x^2) + 2\)
▶️ Answer/Explanation
Solution
Separate variables: \( dy = -x \cos(x^2) \, dx \).
Integrate: \(\int dy = \int -x \cos(x^2) \, dx\).
Use substitution \( u = x^2 \), \( du = 2x \, dx \), so \( x \, dx = \frac{du}{2} \).
Then, \(\int -x \cos(x^2) \, dx = -\frac{1}{2} \int \cos(u) \, du = -\frac{1}{2} \sin(u) + C = -\frac{1}{2} \sin(x^2) + C\).
So, \( y = -\frac{1}{2} \sin(x^2) + C \).
Apply initial condition \( y = 2 \) when \( x = 0 \): \( 2 = -\frac{1}{2} \sin(0) + C \), so \( C = 2 \).
Thus, \( y = -\frac{1}{2} \sin(x^2) + 2 \).
Verify: \(\frac{dy}{dx} = -\frac{1}{2} \cos(x^2) \cdot 2x = -x \cos(x^2)\), which matches.
✅ Answer: D
Scroll to Top