Question
If \(\frac{dy}{dx} = 2y^{2}\) and if \( y = -1 \) when \( x = 1 \), then when \( x = 2 \), \( y = \)
A) \(-\frac{2}{3}\) B) \(-\frac{1}{3}\) C) 0 D) \(\frac{1}{3}\) E) \(\frac{2}{3}\)
▶️ Answer/Explanation
1. Separate variables and integrate: \[ \int y^{-2}dy = \int 2dx \] \[ -y^{-1} = 2x + C \]
2. Use initial condition \( y(1) = -1 \): \[ -(-1)^{-1} = 2(1) + C \] \[ C = -1 \]
3. Solve for \( y \) at \( x = 2 \): \[ -\frac{1}{y} = 2(2) – 1 \] \[ y = -\frac{1}{3} \]
✅ Correct answer: B) \(-\frac{1}{3}\)
Question
Population \( y \) grows according to the equation \(\frac{dy}{dt} = ky\), where \( k \) is a constant and \( t \) is measured in years. If the population doubles every 10 years, then the value of \( k \) is
(A) 0.069
(B) 0.200
(C) 0.301
(D) 3.322
(E) 5.000
(A) 0.069
(B) 0.200
(C) 0.301
(D) 3.322
(E) 5.000
▶️ Answer/Explanation
Solution
The solution to \(\frac{dy}{dt} = ky\) is \( y(t) = y(0) e^{kt} \).
Given the population doubles every 10 years, \( y(10) = 2y(0) \).
Substitute: \( 2y(0) = y(0) e^{10k} \).
Divide by \( y(0) \) (assuming \( y(0) \neq 0 \)): \( 2 = e^{10k} \).
Take natural log: \( \ln(2) = 10k \).
Solve: \( k = \frac{\ln(2)}{10} \approx \frac{0.693}{10} = 0.069 \).
✅ Answer: A
Question

Let \( f \) be a solution to the differential equation \(\frac{dy}{dt} = ky\) where \( k \) is a constant. Values of \( f \) for selected values of \( t \) are given in the table above. Which of the following is an expression for \( f(t) \)?
(A) \( 4e^{\frac{t}{2} \ln 3} \)
(B) \( e^{\frac{t}{2} \ln 9} + 3 \)
(C) \( 2t^2 + 4 \)
(D) \( 4t + 4 \)
▶️ Answer/Explanation
Solution
The solution to \(\frac{dy}{dt} = ky\) is \( f(t) = f(0) e^{kt} \).
From the table, assume \( f(0) = 4 \) and \( f(2) = 12 \).
Then \( f(t) = 4 e^{kt} \). At \( t = 2 \): \( 4 e^{2k} = 12 \).
Solve: \( e^{2k} = 3 \), so \( 2k = \ln 3 \), \( k = \frac{\ln 3}{2} \).
Thus, \( f(t) = 4 e^{\left(\frac{\ln 3}{2}\right) t} = 4 e^{\frac{t}{2} \ln 3} \).
✅ Answer: A
Question
If \(\frac{dy}{dx} = y \sec^2 x\)
(A) \( e^{\tan x} + 4 \)
(B) \( e^{\tan x} + 5 \)
(C) \( 5 e^{\tan x} \)
(D) \( \tan x + 5 \)
(E) \( \tan x + 5 e^x \)
(A) \( e^{\tan x} + 4 \)
(B) \( e^{\tan x} + 5 \)
(C) \( 5 e^{\tan x} \)
(D) \( \tan x + 5 \)
(E) \( \tan x + 5 e^x \)
▶️ Answer/Explanation
Solution
Separate variables: \(\frac{dy}{y} = \sec^2 x \, dx\).
Integrate: \(\ln |y| = \tan x + C\).
Exponentiate: \( y = A e^{\tan x} \).
With \( y(0) = 5 \): \( 5 = A e^0 \), so \( A = 5 \).
Thus, \( y = 5 e^{\tan x} \).
✅ Answer: C