Home / AP Calculus BC : 8.6 Finding the Area Between Curves That Intersect at More Than Two Points- Exam Style questions with Answer- MCQ

AP Calculus BC : 8.6 Finding the Area Between Curves That Intersect at More Than Two Points- Exam Style questions with Answer- MCQ

Question

The region bounded by the x-axis and the part of the graph of  y =cos x between \( x=-\frac{\pi }{2}\)and\( x=\frac{\pi }{2}\) is separated into two regions by the line x = k . If the area of the region for\(  -\frac{\pi }{2}\leq x\leq k\) is  three times the area of the region for\( k\leq x\leq \frac{\pi }{2}\), then k= 

(A) arcsin\( \left ( \frac{1}{4} \right ) \)                      (B) arcsin\( \left ( \frac{1}{3} \right )\)                (C) \(\frac{\pi }{6}\)                                      (D)\(\frac{\pi }{4} (E) \frac{\pi }{3}\)

Answer/Explanation

Ans:C

Question

Calculate the approximate area of the shaded region in the figure by the trapezoidal rule, using divisions at \(x =\frac{4}{3}\) and \( x = \frac{5}{3}\).

(A) \(\frac{50}{27}\)           (B) \(\frac{251}{108}\)                       (C)\(\frac{ 7}{3}\)                          (D) \(\frac{127}{54} \)                     (E) \(\frac{77}{27}\)

Answer/Explanation

Ans:D

 

Question

 

The curves \(y=f(x )\)   and    \(y=g( x) \) shown in the figure above intersect at the point \(( a , b)\)  . The area of the shaded region enclosed by these curves and the line \(x = −1\) is given by

(A) \(\int_{0}^{a}(f(x)-g(x))dx+\int_{-1}^{0}(f(x)+g(x))dx\)

(B) \(\int_{-1}^{b}g(x)dx+\int_{d}^{c}f(x)dx\)

(C) \(\int_{-1}^{c}(f(x)-g(x))dx\)

(D) \(\int_{-1}^{a}(f(x)-g(x))dx\)

(E) \(\int_{-1}^{a}(|f(x)|-|g(x)|)dx\)

Answer/Explanation

Ans:D

 

Question

The area of the region enclosed by the graphs of \(y =x^2\) and \(y = x\) is

(A) \(\frac{1}{6}\)                  (B)\(\frac{1}{3}\)                   (C) \(\frac{1}{2}\)                     (D) \(\frac{5}{6}\)                    (E) 1

Answer/Explanation

Ans:A

Scroll to Top