Home / AP Calculus BC : 9.1 Defining and Differentiating Parametric Equations- Exam Style questions with Answer- MCQ

AP Calculus BC : 9.1 Defining and Differentiating Parametric Equations- Exam Style questions with Answer- MCQ

Question

The asymptotes of the graph of the parametric equations \(x=\frac{1}{t},y=\frac{t}{t+1} \) are

(A) x=0, y = 0          (B) x = 0 only            (C)  x=-1 ,y=0              (D) x = −1 only         (E)x= 0,y=1

Answer/Explanation

Ans:C

 

Question

If \(x=t^{2}-1 and y=2e^{t}, then\frac{dy}{dx}\)=

(A)\(\frac{e^{t}}{2}\)                 (B)\(\frac{2e^{t}}{t}\)             (C)\(\frac{e^{|t|}}{t^{2}}\)               (D) \(\frac{4e^{t}}{2t-1}\)                   (E)\(e^{t}\)

Answer/Explanation

Ans:A

 

Question

 A particle moves in the xy-plane so that at any time t its coordinates are \(x= t^2-1\)  and \(y=t^4-2t^3\) . At t =1, its acceleration vector is

(A) (0 , -1 )                 (B) (0 , 12 )                               (C) (2,  −2 )                                  (D) (2,0)                                         (E) (2,8)

Answer/Explanation

Ans:D

Question

 If\( x=t^{3}-t \)and \(y=\sqrt{3t+1}\),then \(\frac{dy}{dt}\) at t=1 is 

(A) \(\frac{1}{8}\)                     (B) \(\frac{3}{8}\)                        (C) \(\frac{3}{4}\)                         (D) \(\frac{8}{3}\)                           (E)   8

Answer/Explanation

Ans:B

Scroll to Top