Home / AP Calculus BC 9.2 Second Derivatives of Parametric Equations – MCQs

AP Calculus BC 9.2 Second Derivatives of Parametric Equations - MCQs - Exam Style Questions

Calc-Ok Question

A particle has parametric equations \(x(t)=5\ln(t+5)\), \(y(t)=5\sin(\pi t)\). At any point on the curve, \(\displaystyle \frac{dy}{dx}=\pi\cos(\pi t)\,(t+5)\). Find \(\displaystyle \frac{d^{2}y}{dx^{2}}\) at \(t=1\).
(A) \(-18.850\)
(B) \(-3.770\)
(C) \(-3.142\)
(D) \(0.200\)
▶️ Answer/Explanation
Detailed solution

Use \(\displaystyle \frac{d^{2}y}{dx^{2}}=\frac{d}{dt}\!\left(\frac{dy}{dx}\right)\Big/\frac{dx}{dt}\).

\(\displaystyle \frac{dx}{dt}=5/(t+5).\)

Let \(S(t)=\pi\cos(\pi t)\,(t+5)\). Then
\(\displaystyle S'(t)=\pi\big[\cos(\pi t)\big]'(t+5)+\pi\cos(\pi t)\cdot 1 =\pi\!\left(-\pi\sin(\pi t)\right)(t+5)+\pi\cos(\pi t).\)

Thus \(\displaystyle \frac{d^{2}y}{dx^{2}}=\frac{S'(t)}{dx/dt} =\frac{\pi\cos(\pi t)-\pi^{2}(t+5)\sin(\pi t)}{5/(t+5)} =\frac{t+5}{5}\Big(\pi\cos(\pi t)-\pi^{2}(t+5)\sin(\pi t)\Big).\)

At \(t=1\): \(\cos(\pi)=-1,\ \sin(\pi)=0,\ \frac{t+5}{5}=\frac{6}{5}\). Hence
\(\displaystyle \frac{d^{2}y}{dx^{2}}=\frac{6}{5}\big(\pi(-1)-0\big)=-\frac{6\pi}{5}\approx-3.770.\)

Answer: (B)

No-Calc Question

If \(x=t^{4}-1\) and \(y=4t+1\), what is \(\displaystyle \frac{d^{2}y}{dx^{2}}\) in terms of \(t\)?
(A) \(0\)
(B) \(\dfrac{3}{t^{4}}\)
(C) \(4t^{5}\)
(D) \(-\,\dfrac{3}{4t^{7}}\)
▶️ Answer/Explanation
Detailed solution

\(\dfrac{dy}{dt}=4\), \(\dfrac{dx}{dt}=4t^{3}\).
\(\displaystyle \frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{4}{4t^{3}}=\frac{1}{t^{3}}.\)
\(\displaystyle \frac{d^{2}y}{dx^{2}}=\frac{d}{dx}\!\left(\frac{1}{t^{3}}\right) =\frac{d}{dt}\!\left(t^{-3}\right)\Big/ \frac{dx}{dt} =\frac{-3t^{-4}}{4t^{3}} =-\frac{3}{4t^{7}}.\)
Answer: (D)

Scroll to Top