Home / AP Calculus BC : 9.8 Find the Area of a Polar Region or the Area Bounded by a Single Polar Curve- Exam Style questions with Answer- MCQ

AP Calculus BC : 9.8 Find the Area of a Polar Region or the Area Bounded by a Single Polar Curve- Exam Style questions with Answer- MCQ

Question

The area of the closed region bounded by the polar graph of \(r=\sqrt{3+cos\Theta }\) is given by the integral

(A)\(\int_{0}^{2\pi }\sqrt{3+cos\Theta } d\Theta\)            (B)\(\int_{0}^{\pi }\sqrt{3+cos\Theta } d\Theta\)                          (C)\(2\int_{0}^{\pi /2}(3+cos\theta )d\Theta\)          (D)\(\int_{0 }^{\pi}(3+cos\Theta )d\Theta\)                                          (E)\(2\int_{0}^{\pi /2}\sqrt{3+cos\Theta }d\Theta\)

Answer/Explanation

Ans:D

Question

 The area of the region enclosed by the polar curve r =1 -cos θ is

(A)\( \frac{3}{4}\pi \)        (B)\(\pi \)                  (C)\(\frac{3}{2}\pi\)                (D)\(2\pi\)                 (E)\(3\pi\)

Answer/Explanation

Ans:C

Question

 The area of the region enclosed by the polar curve  \(r=sin(2\Theta )for 0\leq \Theta \leq \frac{\pi }{2}\) is

(A) 0                               (B) \(\frac{1}{2}\)                        (C) 1             (D)\(\frac{π}{8}\)                              (E) \(\frac{π}{4}\)

Answer/Explanation

Ans:D

Question 

Which of the following gives the area of the region enclosed by the loop of the graph of the polar curve r =4cos(3 θ )   shown in the figure above?

(A)\(16\int_{\frac{\pi}{3}}^{\frac{\pi}{3}} cos(3\theta )d\theta\)

(B)\(16\int_{\frac{\pi}{6}}^{\frac{\pi}{6}} cos(3\theta )d\theta\)

(C)\(16\int_{\frac{\pi}{3}}^{\frac{\pi}{3}} cos^{2}(3\theta )d\theta\)

(D)\(16\int_{\frac{\pi}{6}}^{\frac{\pi}{6}} cos^{2}(3\theta )d\theta\)

(E)\(16\int_{\frac{\pi}{3}}^{\frac{\pi}{3}} cos^{2}(3\theta )d\theta\)

Answer/Explanation

Ans:E

\(r=0\) when \(cos 3\theta =0\Rightarrow \theta =\pm \frac{\pi }{6}\). The region is for the interval from \(\theta =- \frac{\pi }{6}\) to \(\theta= \frac{\pi }{6}\) .

Scroll to Top