AP Calculus BC 2.3 Estimating Derivatives of a Function at a Point - FRQs - Exam Style Questions
Calc-Ok Question
\(t\) (hours) | 0 | 1 | 3 | 6 | 8 |
---|---|---|---|---|---|
\(R(t)\) (liters/hour) | 1340 | 1190 | 950 | 740 | 700 |
Most-appropriate topic codes (CED):
• TOPIC 6.2: Approximating Areas with Riemann Sums — part (b)
• TOPIC 8.3: Using Accumulation Functions & Definite Integrals in Applied Contexts — part (c)
• TOPIC 1.16: Working with the Intermediate Value Theorem (IVT) — part (d)
▶️ Answer/Explanation
(a) Estimate \(R'(2)\)
Use a symmetric difference quotient with nearby data at \(t=1\) and \(t=3\):
\[ R'(2)\approx\frac{R(3)-R(1)}{3-1}=\frac{950-1190}{2}=-120\ \text{liters/hr}^2. \] Units: liters per hour per hour.
(b) Left Riemann sum on \([0,1],[1,3],[3,6],[6,8]\)
\[ \int_0^{8}R(t)\,dt \approx 1\cdot R(0)+2\cdot R(1)+3\cdot R(3)+2\cdot R(6) =1(1340)+2(1190)+3(950)+2(740). \] \[ =1340+2380+2850+1480 = \boxed{8050\ \text{liters removed}}. \] Because \(R\) is decreasing, a left sum **overestimates** the integral.
(c) Water in the tank at \(t=8\)
Net amount \(=\) initial \(+\displaystyle\int_{0}^{8}W(t)\,dt – \text{(removed)}\). Using a calculator, \[ \int_{0}^{8}2000e^{-t^2/20}\,dt \approx 7836.195325\ \text{L}. \] Therefore, \[ \text{Total} \approx 50{,}000 + 7836.195325 – 8050 \approx \boxed{49{,}786\ \text{liters (nearest liter)}}. \]
(d) Existence of \(t\) with \(W(t)=R(t)\)
Let \(F(t)=W(t)-R(t)\). Both \(W\) and \(R\) are continuous on \([0,8]\), so \(F\) is continuous. \[ F(0)=2000-1340>0,\qquad F(8)=2000e^{-64/20}-700\approx 81.5-700<0. \] Since \(F(0)>0\) and \(F(8)<0\), the **Intermediate Value Theorem** ensures some \(c\in(0,8)\) with \(F(c)=0\), i.e., \(\boxed{W(c)=R(c)}\).