Home / AP Chemistry 7.11 Introduction to Solubility Equilibria Study Notes

AP Chemistry 7.11 Introduction to Solubility Equilibria Study Notes - New Syllabus Effective fall 2024

AP Chemistry 7.11 Introduction to Solubility Equilibria Study Notes- New syllabus

AP Chemistry 7.11 Introduction to Solubility Equilibria Study Notes – AP Chemistry –  per latest AP Chemistry Syllabus.

LEARNING OBJECTIVE

Calculate the solubility of a salt based on the value of  Ksp for the salt.

Key Concepts: 

  • The Dissolution of a Salt and the Solubility Product Constant
  • Calculating Solubility from Ksp
  • Relating Solubility Rules and Ksp
  • Using Molar Solubility to Calculate \( \mathrm{K_{sp}} \)

AP Chemistry-Concise Summary Notes- All Topics

The Dissolution of a Salt and the Solubility Product Constant

The dissolution of an ionic compound is a reversible process that reaches an equilibrium between undissolved solid and its dissolved ions in solution. The extent of this equilibrium is represented by the solubility-product constant \( \mathrm{K_{sp}} \).

For a general salt \( \mathrm{A_{m}B_{n(s)}} \):

\( \mathrm{A_{m}B_{n(s)} ⇄ mA^{n+}(aq) + nB^{m-}(aq)} \)

The equilibrium expression for the solubility product is:

\( \mathrm{K_{sp} = [A^{n+}]^m [B^{m-}]^n} \)

  • Solids are not included in \( \mathrm{K_{sp}} \) because their concentrations are constant.
  • \( \mathrm{K_{sp}} \) provides a quantitative measure of a salt’s solubility — larger \( \mathrm{K_{sp}} \) → more soluble salt.

Example : 

Reaction: \( \mathrm{PbCl_2(s) ⇄ Pb^{2+}(aq) + 2Cl^-(aq)} \)

 Write the expression for \( \mathrm{K_{sp}} \).

▶️ Answer / Explanation

Step 1: Use stoichiometric coefficients as exponents.

Step 2: \( \mathrm{K_{sp} = [Pb^{2+}][Cl^-]^2} \)

Step 3: Note that \( \mathrm{[PbCl_2(s)]} \) is omitted because it’s constant.

Final Answer: \( \mathrm{K_{sp} = [Pb^{2+}][Cl^-]^2} \)

Calculating Solubility from Ksp

The solubility of an ionic compound in mol/L can be calculated from its \( \mathrm{K_{sp}} \) value by relating ion concentrations to the molar solubility (s).

General Formula:

For \( \mathrm{A_{m}B_{n(s)} ⇄ mA^{n+} + nB^{m-}} \):

\( \mathrm{K_{sp} = (m s)^m (n s)^n = s^{m+n} (m^m n^n)} \)

  • \( \mathrm{s} \): molar solubility (mol/L)
  • Use algebra to solve for \( \mathrm{s} \) when \( \mathrm{K_{sp}} \) is known.

Example : 

Reaction: \( \mathrm{Ag_2CrO_4(s) ⇄ 2Ag^+(aq) + CrO_4^{2−}(aq)} \)

Given: \( \mathrm{K_{sp} = 1.1 \times 10^{-12}} \)

 Find the molar solubility (\( \mathrm{s} \)) of \( \mathrm{Ag_2CrO_4} \).

▶️ Answer / Explanation

Step 1: Let \( \mathrm{s} \) = molar solubility.

\( \mathrm{[Ag^+] = 2s, [CrO_4^{2−}] = s} \)

Step 2: Substitute into \( \mathrm{K_{sp}} \):

\( \mathrm{K_{sp} = (2s)^2 (s) = 4s^3} \)

Step 3: Solve for \( \mathrm{s} \): \( \mathrm{s = \sqrt[3]{\dfrac{K_{sp}}{4}} = \sqrt[3]{\dfrac{1.1 \times 10^{-12}}{4}} = 6.5 \times 10^{-5}\ mol/L} \)

Final Answer: \( \mathrm{s = 6.5 \times 10^{-5}\ mol/L} \)

Relating Solubility Rules and Ksp

The empirical solubility rules can be explained quantitatively using \( \mathrm{K_{sp}} \): salts with large \( \mathrm{K_{sp}} \) values (>1) are highly soluble, whereas those with very small \( \mathrm{K_{sp}} \) values are sparingly soluble or practically insoluble.

Key Relationship:

  • \( \mathrm{K_{sp} \gg 1} \): soluble salt — dissolves extensively.
  • \( \mathrm{K_{sp} \ll 1} \): insoluble salt — dissolves very slightly.
  • Solubility rules (e.g., “all nitrates are soluble”) reflect very high \( \mathrm{K_{sp}} \) values.

Example : 

Data:

  • \( \mathrm{K_{sp}(AgCl) = 1.8 \times 10^{-10}} \)
  • \( \mathrm{K_{sp}(AgBr) = 5.0 \times 10^{-13}} \)
  • \( \mathrm{K_{sp}(AgI) = 8.3 \times 10^{-17}} \)

Rank the halide salts by solubility.

▶️ Answer / Explanation

Step 1: For 1:1 salts, solubility is directly proportional to \( \mathrm{\sqrt{K_{sp}}} \).

Step 2: \( \mathrm{AgCl > AgBr > AgI} \)

Step 3: AgCl dissolves most readily; AgI is least soluble.

Using Molar Solubility to Calculate \( \mathrm{K_{sp}} \)

The molar solubility of a salt (\( \mathrm{s} \), in mol/L) represents the number of moles of solute that dissolve per liter of solution to reach equilibrium. Once \( \mathrm{s} \) is known, it can be used to calculate the solubility product constant \( \mathrm{K_{sp}} \) using the stoichiometry of the dissolution equilibrium.

General Equation for Ionic Dissolution:

\( \mathrm{A_{m}B_{n(s)} ⇄ mA^{n+}(aq) + nB^{m-}(aq)} \)

Expression for \( \mathrm{K_{sp}} \):

\( \mathrm{K_{sp} = [A^{n+}]^m [B^{m-}]^n} \)

If the molar solubility is \( \mathrm{s} \):

  • \( \mathrm{[A^{n+}] = m \times s} \)
  • \( \mathrm{[B^{m-}] = n \times s} \)

Substitute into the equilibrium expression:

\( \mathrm{K_{sp} = (m s)^m (n s)^n = s^{(m+n)} (m^m n^n)} \)

Key Idea:

  • The stoichiometric coefficients become exponents in the \( \mathrm{K_{sp}} \) expression.
  • Solubility \( \mathrm{s} \) can be used directly to find \( \mathrm{K_{sp}} \), or vice versa.
  • Units of \( \mathrm{K_{sp}} \) depend on the total number of ions produced.

Example : 

Reaction: \( \mathrm{CaF_2(s) ⇄ Ca^{2+}(aq) + 2F^-(aq)} \)

Given: \( \mathrm{s = 2.1 \times 10^{-4}\ mol/L} \)

Calculate \( \mathrm{K_{sp}} \).

▶️ Answer / Explanation

Step 1: Write the equilibrium concentrations:

\( \mathrm{[Ca^{2+}] = s = 2.1 \times 10^{-4}} \)

\( \mathrm{[F^-] = 2s = 4.2 \times 10^{-4}} \)

Step 2: Substitute into the \( \mathrm{K_{sp}} \) expression:

\( \mathrm{K_{sp} = [Ca^{2+}][F^-]^2 = (s)(2s)^2 = 4s^3} \)

Step 3: Plug in \( \mathrm{s = 2.1 \times 10^{-4}} \):

\( \mathrm{K_{sp} = 4(2.1 \times 10^{-4})^3 = 4(9.26 \times 10^{-12}) = 3.7 \times 10^{-11}} \)

Final Answer: \( \mathrm{K_{sp} = 3.7 \times 10^{-11}} \)

Example : 

Reaction: \( \mathrm{Al(OH)_3(s) ⇄ Al^{3+}(aq) + 3OH^-(aq)} \)

Given: \( \mathrm{s = 1.3 \times 10^{-9}\ mol/L} \)

Find \( \mathrm{K_{sp}} \).

▶️ Answer / Explanation

Step 1: Write the ion concentrations:

\( \mathrm{[Al^{3+}] = s} \)

\( \mathrm{[OH^-] = 3s} \)

Step 2: Write the \( \mathrm{K_{sp}} \) expression:

\( \mathrm{K_{sp} = [Al^{3+}][OH^-]^3 = (s)(3s)^3 = 27s^4} \)

Step 3: Substitute \( \mathrm{s = 1.3 \times 10^{-9}} \):

\( \mathrm{K_{sp} = 27(1.3 \times 10^{-9})^4 = 27(2.8561 \times 10^{-36}) = 7.7 \times 10^{-35}} \)

Final Answer: \( \mathrm{K_{sp} = 7.7 \times 10^{-35}} \)

Scroll to Top