Home / AP Chemistry 9.2 Absolute Entropy and Entropy Change Study Notes

AP Chemistry 9.2 Absolute Entropy and Entropy Change Study Notes - New Syllabus Effective fall 2024

AP Chemistry 9.2 Absolute Entropy and Entropy Change Study Notes- New syllabus

AP Chemistry 9.2 Absolute Entropy and Entropy Change Study Notes – AP Chemistry –  per latest AP Chemistry Syllabus.

LEARNING OBJECTIVE

Calculate the standard entropy change for a chemical or physical process based on the absolute entropies (standard molar entropies) of the species involvedinthe process.

Key Concepts: 

  • Calculating Standard Entropy Change (\( \mathrm{\Delta S^\circ} \))

AP Chemistry-Concise Summary Notes- All Topics

Calculating Standard Entropy Change (\( \mathrm{\Delta S^\circ} \))

The standard entropy change of a reaction (\( \mathrm{\Delta S^\circ_{reaction}} \)) is the difference between the total entropy of the products and the total entropy of the reactants, each multiplied by their respective stoichiometric coefficients from the balanced chemical equation.

Formula:

\( \mathrm{\Delta S^\circ = \sum S^\circ(products) – \sum S^\circ(reactants)} \)

where:

\( \mathrm{S^\circ} \) = standard molar entropy (in J mol\(^{-1}\) K\(^{-1}\))
\( \mathrm{\sum S^\circ(products)} \) = sum of the standard entropies of all products
\( \mathrm{\sum S^\circ(reactants)} \) = sum of the standard entropies of all reactants

Important Notes:

  1. Use the balanced chemical equation to determine the number of moles of each species.
  2. The units of entropy are usually J mol\(^{-1}\) K\(^{-1}\).
  3. If \( \mathrm{\Delta S^\circ > 0} \): the process leads to greater disorder (entropy increases).
  4. If \( \mathrm{\Delta S^\circ < 0} \): the process becomes more ordered (entropy decreases).

Step-by-Step Method:

  1. Write the balanced equation.
  2. List the standard molar entropies (\( \mathrm{S^\circ} \)) for all reactants and products.
  3. Multiply each \( \mathrm{S^\circ} \) value by its coefficient from the equation.
  4. Subtract the total entropy of the reactants from that of the products.

Example :

Calculate the standard entropy change for the combustion of hydrogen gas:

\( \mathrm{2H_2(g) + O_2(g) \rightarrow 2H_2O(l)} \)

Given data:

\( \mathrm{S^\circ(H_2(g)) = 131.0\ J\ mol^{-1}\ K^{-1}} \)
\( \mathrm{S^\circ(O_2(g)) = 205.0\ J\ mol^{-1}\ K^{-1}} \)
\( \mathrm{S^\circ(H_2O(l)) = 70.0\ J\ mol^{-1}\ K^{-1}} \)

▶️ Answer/Explanation

Step 1: Apply the formula:

\( \mathrm{\Delta S^\circ = \sum S^\circ(products) – \sum S^\circ(reactants)} \)

Step 2: Substitute the values:

\( \mathrm{\Delta S^\circ = [2(70.0)] – [2(131.0) + 205.0]} \)

Step 3: Calculate:

\( \mathrm{\Delta S^\circ = 140.0 – 467.0 = -327.0\ J\ mol^{-1}\ K^{-1}} \)

Step 4: Interpretation:

The entropy change is negative, indicating that the products are more ordered than the reactants. This is consistent with gases forming a liquid, which has less particle freedom.

Final Answer: \( \mathrm{\Delta S^\circ = -327\ J\ mol^{-1}\ K^{-1}} \)

Example :

Calculate \( \mathrm{\Delta S^\circ} \) for the decomposition of calcium carbonate:

\( \mathrm{CaCO_3(s) \rightarrow CaO(s) + CO_2(g)} \)

Given:

\( \mathrm{S^\circ(CaCO_3(s)) = 93.0\ J\ mol^{-1}\ K^{-1}} \)
\( \mathrm{S^\circ(CaO(s)) = 39.7\ J\ mol^{-1}\ K^{-1}} \)
\( \mathrm{S^\circ(CO_2(g)) = 213.7\ J\ mol^{-1}\ K^{-1}} \)

▶️ Answer/Explanation

Step 1: Use the formula:

\( \mathrm{\Delta S^\circ = [S^\circ(CaO) + S^\circ(CO_2)] – [S^\circ(CaCO_3)]} \)

Step 2: Substitute values:

\( \mathrm{\Delta S^\circ = (39.7 + 213.7) – 93.0} \)

Step 3: Calculate:

\( \mathrm{\Delta S^\circ = 253.4 – 93.0 = +160.4\ J\ mol^{-1}\ K^{-1}} \)

Step 4: Interpretation:

The positive entropy change indicates increased disorder due to the formation of a gas from a solid reactant.

Final Answer: \( \mathrm{\Delta S^\circ = +160.4\ J\ mol^{-1}\ K^{-1}} \)

Scroll to Top