AP Physics 1- 7.3 Representing and Analyzing SHM- Study Notes- New Syllabus
AP Physics 1-7.3 Representing and Analyzing SHM – Study Notes
AP Physics 1-7.3 Representing and Analyzing SHM – Study Notes -AP Physics 1 – per latest Syllabus.
Key Concepts:
- Representing and Analyzing SHM
Representing and Analyzing SHM
Displacement in SHM:
The displacement of an object in SHM from its equilibrium position as a function of time can be represented by:
\( x(t) = A \cos(\omega t + \phi) \) or \( x(t) = A \sin(\omega t + \phi) \)
- \( A \) = amplitude (maximum displacement)
- \( \omega \) = angular frequency (\( \omega = 2 \pi f = \sqrt{\dfrac{k}{m}} \) for mass-spring, \( \omega = \sqrt{\dfrac{g}{L}} \) for pendulum)
- \( \phi \) = phase constant (depends on initial conditions)
Velocity in SHM:
The instantaneous velocity is the time derivative of displacement:
\( v(t) = \dfrac{dx}{dt} = – A \omega \sin(\omega t + \phi) \)
Maximum velocity: \( v_{max} = A \omega \)
Acceleration in SHM:
The instantaneous acceleration is the time derivative of velocity or second derivative of displacement:
\( a(t) = \dfrac{dv}{dt} = \dfrac{d^2 x}{dt^2} = – A \omega^2 \cos(\omega t + \phi) = – \omega^2 x(t) \)
Maximum acceleration: \( a_{max} = A \omega^2 \)
Minima, Maxima, and Zeros:
- Displacement: maximum at \( \pm A \), zero at equilibrium.
- Velocity: maximum at equilibrium, zero at maximum displacement (\( \pm A \)).
- Acceleration: maximum at maximum displacement (\( \pm A \)), zero at equilibrium.
Recognizing these extrema or zeros helps in qualitatively describing the behavior of the SHM.
Key Relationships:
- Acceleration is always proportional and opposite to displacement: \( a \propto -x \)
- Velocity is maximum at the equilibrium position and zero at maximum displacement
- Acceleration is maximum at maximum displacement and zero at the equilibrium position
Graphical Representation:
- Displacement-time graph: Cosine or sine wave; amplitude = maximum displacement
- Velocity-time graph: Sine or cosine wave, shifted by 90° relative to displacement
- Acceleration-time graph: Sine or cosine wave, shifted by 180° relative to displacement
Example:
A mass-spring system has amplitude \( A = 0.1 \, \text{m} \) and angular frequency \( \omega = 5 \, \text{rad/s} \). Find the displacement, velocity, and acceleration at \( t = 0.2 \, \text{s} \) assuming \( \phi = 0 \).
▶️Answer/Explanation
Displacement: \( x = A \cos(\omega t + \phi) = 0.1 \cos(5 \cdot 0.2 + 0) = 0.1 \cos(1) \approx 0.054 \, \text{m} \)
Velocity: \( v = – A \omega \sin(\omega t + \phi) = – 0.1 \cdot 5 \sin(1) \approx -0.42 \, \text{m/s} \)
Acceleration: \( a = – A \omega^2 \cos(\omega t + \phi) = – 0.1 \cdot 25 \cos(1) \approx -1.35 \, \text{m/s²} \)
Example :
A simple pendulum of length \( L = 1.2 \, \text{m} \) oscillates with a maximum angular displacement of \( 10^\circ \) (small angle approximation).
Find the displacement, velocity, and acceleration at \( t = 0.5 \, \text{s} \) if the angular frequency is \( \omega = \sqrt{g/L} \) and \( g = 9.8 \, \text{m/s²} \), assuming \( \phi = 0 \).
▶️Answer/Explanation
Angular frequency: \( \omega = \sqrt{\dfrac{g}{L}} = \sqrt{\dfrac{9.8}{1.2}} \approx 2.86 \, \text{rad/s} \)
Displacement: \( x = A \cos(\omega t + \phi) = 0.209 \cos(2.86 \cdot 0.5) \approx 0.157 \, \text{m} \) (using \( A = L \theta_{max} \approx 1.2 \cdot 0.1745 \))
Velocity: \( v = – A \omega \sin(\omega t + \phi) = – 0.209 \cdot 2.86 \cdot \sin(1.43) \approx -0.58 \, \text{m/s} \)
Acceleration: \( a = – A \omega^2 \cos(\omega t + \phi) = – 0.209 \cdot 8.18 \cdot \cos(1.43) \approx -1.07 \, \text{m/s²} \)
Example :
A mass of 0.8 kg attached to a spring oscillates with amplitude \( A = 0.05 \, \text{m} \) and spring constant \( k = 80 \, \text{N/m} \).
Find the maximum velocity and maximum acceleration of the mass.
▶️Answer/Explanation
Angular frequency: \( \omega = \sqrt{\dfrac{k}{m}} = \sqrt{\dfrac{80}{0.8}} = 10 \, \text{rad/s} \)
Maximum velocity: \( v_{max} = A \omega = 0.05 \cdot 10 = 0.5 \, \text{m/s} \)
Maximum acceleration: \( a_{max} = A \omega^2 = 0.05 \cdot 100 = 5 \, \text{m/s²} \)