Home / AP® Exam / AP® Physics 1 / AP Physics 1- 7.3 Representing and Analyzing SHM- Study Notes

AP Physics 1- 7.3 Representing and Analyzing SHM- Study Notes- New Syllabus

AP Physics 1-7.3 Representing and Analyzing SHM – Study Notes

AP Physics 1-7.3 Representing and Analyzing SHM – Study Notes -AP Physics 1 – per latest Syllabus.

Key Concepts:

  • Representing and Analyzing SHM

AP Physics 1-Concise Summary Notes- All Topics

Representing and Analyzing SHM

Displacement in SHM:

The displacement of an object in SHM from its equilibrium position as a function of time can be represented by:

\( x(t) = A \cos(\omega t + \phi) \) or \( x(t) = A \sin(\omega t + \phi) \)

  • \( A \) = amplitude (maximum displacement)
  • \( \omega \) = angular frequency (\( \omega = 2 \pi f = \sqrt{\dfrac{k}{m}} \) for mass-spring, \( \omega = \sqrt{\dfrac{g}{L}} \) for pendulum)
  • \( \phi \) = phase constant (depends on initial conditions)

Velocity in SHM:

The instantaneous velocity is the time derivative of displacement:

\( v(t) = \dfrac{dx}{dt} = – A \omega \sin(\omega t + \phi) \)

Maximum velocity: \( v_{max} = A \omega \)

Acceleration in SHM:

The instantaneous acceleration is the time derivative of velocity or second derivative of displacement:

\( a(t) = \dfrac{dv}{dt} = \dfrac{d^2 x}{dt^2} = – A \omega^2 \cos(\omega t + \phi) = – \omega^2 x(t) \)

Maximum acceleration: \( a_{max} = A \omega^2 \)

Minima, Maxima, and Zeros:

  • Displacement: maximum at \( \pm A \), zero at equilibrium.
  • Velocity: maximum at equilibrium, zero at maximum displacement (\( \pm A \)).
  • Acceleration: maximum at maximum displacement (\( \pm A \)), zero at equilibrium.

Recognizing these extrema or zeros helps in qualitatively describing the behavior of the SHM.

Key Relationships:

  • Acceleration is always proportional and opposite to displacement: \( a \propto -x \)
  • Velocity is maximum at the equilibrium position and zero at maximum displacement
  • Acceleration is maximum at maximum displacement and zero at the equilibrium position

Graphical Representation:

  • Displacement-time graph: Cosine or sine wave; amplitude = maximum displacement
  • Velocity-time graph: Sine or cosine wave, shifted by 90° relative to displacement
  • Acceleration-time graph: Sine or cosine wave, shifted by 180° relative to displacement

Example:

A mass-spring system has amplitude \( A = 0.1 \, \text{m} \) and angular frequency \( \omega = 5 \, \text{rad/s} \). Find the displacement, velocity, and acceleration at \( t = 0.2 \, \text{s} \) assuming \( \phi = 0 \).

▶️Answer/Explanation

Displacement: \( x = A \cos(\omega t + \phi) = 0.1 \cos(5 \cdot 0.2 + 0) = 0.1 \cos(1) \approx 0.054 \, \text{m} \)

Velocity: \( v = – A \omega \sin(\omega t + \phi) = – 0.1 \cdot 5 \sin(1) \approx -0.42 \, \text{m/s} \)

Acceleration: \( a = – A \omega^2 \cos(\omega t + \phi) = – 0.1 \cdot 25 \cos(1) \approx -1.35 \, \text{m/s²} \)

Example :

A simple pendulum of length \( L = 1.2 \, \text{m} \) oscillates with a maximum angular displacement of \( 10^\circ \) (small angle approximation).

Find the displacement, velocity, and acceleration at \( t = 0.5 \, \text{s} \) if the angular frequency is \( \omega = \sqrt{g/L} \) and \( g = 9.8 \, \text{m/s²} \), assuming \( \phi = 0 \).

▶️Answer/Explanation

Angular frequency: \( \omega = \sqrt{\dfrac{g}{L}} = \sqrt{\dfrac{9.8}{1.2}} \approx 2.86 \, \text{rad/s} \)

Displacement: \( x = A \cos(\omega t + \phi) = 0.209 \cos(2.86 \cdot 0.5) \approx 0.157 \, \text{m} \) (using \( A = L \theta_{max} \approx 1.2 \cdot 0.1745 \))

Velocity: \( v = – A \omega \sin(\omega t + \phi) = – 0.209 \cdot 2.86 \cdot \sin(1.43) \approx -0.58 \, \text{m/s} \)

Acceleration: \( a = – A \omega^2 \cos(\omega t + \phi) = – 0.209 \cdot 8.18 \cdot \cos(1.43) \approx -1.07 \, \text{m/s²} \)

Example :

A mass of 0.8 kg attached to a spring oscillates with amplitude \( A = 0.05 \, \text{m} \) and spring constant \( k = 80 \, \text{N/m} \).

Find the maximum velocity and maximum acceleration of the mass.

▶️Answer/Explanation

Angular frequency: \( \omega = \sqrt{\dfrac{k}{m}} = \sqrt{\dfrac{80}{0.8}} = 10 \, \text{rad/s} \)

Maximum velocity: \( v_{max} = A \omega = 0.05 \cdot 10 = 0.5 \, \text{m/s} \)

Maximum acceleration: \( a_{max} = A \omega^2 = 0.05 \cdot 100 = 5 \, \text{m/s²} \)

Scroll to Top